Skip to main content
Log in

Polyethylene glycol and immunology: aspects of allergic reactions and their mechanisms, as well as ways to prevent them in clinical practice

  • RESEARCH
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

In modern medical practice, where polyethylene glycol is widely used as a component of various drugs, such as vaccines, chemotherapy drugs, and antibiotics, including vaccines, the issue of allergic reactions to this substance is becoming increasingly important. The purpose of this study is to review and systematise data on various aspects of allergic reactions to polyethylene glycol with the aim of better understanding their pathogenesis, clinical manifestations, diagnostic methods, and possible treatment approaches. The study analysed literature data in modern databases, such as MEDLINE, PubMed, and Scopus, on allergic reactions to polyethylene glycol, using the keywords: “PEG”, “polyethylene glycol”, “allergy”, “side effect”. The main aspects of allergy to this substance were highlighted, including mechanisms of development, diagnostic methods, and possible treatment strategies. The analysis found that allergic reactions to polyethylene glycol can manifest in a variety of ways, including anaphylaxis and systemic reactions. A possible role for the immune response has been identified, including the production of IgE and IgM antibodies, complement activation, and accelerated clearance in response to polyethylene glycol, in blood plasma. Data are also provided on how to diagnose an increased risk of an allergic reaction in patients who have previously received drugs with this type of drug transporter and in patients receiving high molecular weight types of polyethylene glycol. The results of this review contribute to a better understanding of allergic reactions to polyethylene glycol and provide information for the development of more effective diagnostic and treatment methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Tenchov R, Sasso JM, Zhou QA. PEGylated lipid nanoparticle formulations: immunological safety and efficiency perspective. Bioconjug Chem. 2023;34(6):941–60. https://doi.org/10.1021/acs.bioconjchem.3c00174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Poovi G, Damodharan N. Development of tamoxifen-loaded surface-modified nanostructured lipid carrier using experimental design: in vitro and ex vivo characterisation. IET Nanobiotechnol. 2020;14(4):261–74. https://doi.org/10.1049/iet-nbt.2019.0276.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wolkersdorfer AM, Jugovic I, Scheller L, Gutmann M, Hahn L, Diessner J, Lühmann T, Meinel L. PEGylation of human vascular endothelial growth factor. ACS Biomater Sci Eng. 2024;10(1):149–55. https://doi.org/10.1021/acsbiomaterials.3c00253.

    Article  CAS  PubMed  Google Scholar 

  4. Zuma LK, Gasa NL, Makhoba XH, Pooe OJ. Protein PEGylation: navigating recombinant protein stability, aggregation, and bioactivity. BioMed Res Int. 2022;2022:8929715. https://doi.org/10.1155/2022/8929715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shimabukuro T, Nair N. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine. J Am Med Assoc. 2021;325(8):780–1. https://doi.org/10.1001/jama.2021.0600.

    Article  CAS  Google Scholar 

  6. Moghimi SM. Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines. Mol Ther. 2021;29(3):898–900. https://doi.org/10.1016/j.ymthe.2021.01.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Torjesen I. Covid-19: Norway investigates 23 deaths in frail elderly patients after vaccination. BMJ. 2021;372:n149. https://doi.org/10.1136/bmj.n149.

    Article  PubMed  Google Scholar 

  8. Cox F, Khalib K, Conlon N. PEG that reaction: a case series of allergy to polyethylene glycol. BMJ. 2021;61(6):832–5. https://doi.org/10.1002/jcph.1824.

    Article  CAS  Google Scholar 

  9. Zalba S, Ten Hagen TLM, Burgui C, Garrido MJ. Stealth nanoparticles in oncology: facing the PEG dilemma. J Control Release. 2022;351:22–36. https://doi.org/10.1016/j.jconrel.2022.09.002.

    Article  CAS  PubMed  Google Scholar 

  10. Elgamal HA, Mohamed SA, Farghali AA, Hassan AME. PEG@ Carbon nanotubes composite as an effective nanocarrier of ixazomib for myeloma cancer therapy. Nanoscale Res Lett. 2022;17(1):72. https://doi.org/10.1186/s11671-022-03707-2.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alavi SE, KoohiMoftakhari Esfahani M, Raza A, Adelnia H, Ebrahimi Shahmabadi H. PEG-grafted liposomes for enhanced antibacterial and antibiotic activities: an in vivo study. NanoImpact. 2022;25:100384. https://doi.org/10.1016/j.impact.2022.100384.

    Article  CAS  PubMed  Google Scholar 

  12. Deuker MFS, Mailänder V, Morsbach S, Landfester K. Anti-PEG antibodies enriched in the protein corona of PEGylated nanocarriers impact the cell uptake. Nanoscale Horiz. 2023;17:1377–85. https://doi.org/10.1039/d3nh00198a.

    Article  ADS  CAS  Google Scholar 

  13. Okada N, Taro S, Ando H, Nakamura S, Goda M, Abe M, Kitahara T, Ishida T, Ishizawa K. Clinical impact of antipolyethylene glycol (PEG) antibody in hematological patients administered pegylated-granulocyte colony-stimulating factor. Clin Pharmacol Drug Dev. 2023;12(8):826–31. https://doi.org/10.1002/cpdd.1225.

    Article  CAS  PubMed  Google Scholar 

  14. Bavli Y, Chen BM, Gross G, Hershko A, Turjeman K, Roffler S, Barenholz Y. Anti-PEG antibodies before and after a first dose of Comirnaty® (mRNA-LNP-based SARS-CoV-2 vaccine). J Control Release. 2023;354:316–22. https://doi.org/10.1016/j.jconrel.2022.12.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen WA, Chang DY, Chen BM, Lin YC, Barenholz Y, Roffler SR. Antibodies against poly(ethylene glycol) activate innate immune cells and induce hypersensitivity reactions to PEGylated nanomedicines. ACS Nano. 2023;17(6):5757–72. https://doi.org/10.1021/acsnano.2c12193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elsadek NE, Emam SE, Abu Lila AS, Shimizu T, Ando H, Ishima Y, Ishida T. Pegfilgrastim (PEG-G-CSF) induces anti-polyethylene glycol (PEG) IgM via a T cell-dependent mechanism. Biol Pharm Bull. 2020;43(9):1393–7. https://doi.org/10.1248/bpb.b20-00345.

    Article  CAS  PubMed  Google Scholar 

  17. Weis-Garcia F, Carnahan RH. Characterizing antibodies Cold Spring Harb Protoc. 2017;11:857–69. https://doi.org/10.1101/pdb.top093823.

    Article  Google Scholar 

  18. Zhou ZH, Stone CA, Jakubovic B, Phillips EJ, Sussman G, Park J, Hoang U, Kirshner SL, Levin R, Kozlowski S. Anti-PEG IgE in anaphylaxis associated with polyethylene glycol. J Allergy Clin Immunol Pract. 2021;9(4):1731–3. https://doi.org/10.1016/j.jaip.2020.11.011.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Z, Chu Y, Li C, Tang W, Qian J, Wei X, Lu W, Ying T, Zhan C. Anti-PEG scFv corona ameliorates accelerated blood clearance phenomenon of PEGylated nanomedicines. J Control Release. 2021;330:493–501. https://doi.org/10.1016/j.jconrel.2020.12.047.

    Article  CAS  PubMed  Google Scholar 

  20. Subasic CN, Butcher NJ, Minchin RF, Kaminskas LM. Dose-dependent production of anti-PEG IgM after intramuscular PEGylated-hydrogenated soy phosphatidylcholine liposomes, but not lipid nanoparticle formulations of DNA, correlates with the plasma clearance of pegylated liposomal doxorubicin in rats. Mol Pharm. 2023;20(7):3494–504. https://doi.org/10.1021/acs.molpharmaceut.3c00104.

    Article  CAS  PubMed  Google Scholar 

  21. Mima Y, Hashimoto Y, Shimizu T, Kiwada H, Ishida T. Anti-PEG IgM is a major contributor to the accelerated blood clearance of polyethylene glycol-conjugated protein. Mol Pharm. 2015;12(7):2429–35. https://doi.org/10.1021/acs.molpharmaceut.5b00144.

    Article  CAS  PubMed  Google Scholar 

  22. Liu M, Chu Y, Liu H, Su Y, Zhang Q, Jiao J, Liu M, Ding J, Liu M, Hu Y, Dai Y, Zhang R, Liu X, Deng Y, Song Y. Accelerated blood clearance of nanoemulsions modified with PEG-cholesterol and PEG-phospholipid derivatives in rats: the effect of PEG-lipid linkages and PEG molecular weights. Mol Pharm. 2020;17(4):1059–70. https://doi.org/10.1021/acs.molpharmaceut.9b00770.

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki T, Suzuki Y, Hihara T, Kubara K, Kondo K, Hyodo K, Yamazaki K, Ishida T, Ishihara H. PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production. Int J Pharm. 2020;588:119792. https://doi.org/10.1016/j.ijpharm.2020.119792.

    Article  CAS  PubMed  Google Scholar 

  24. Liu M, Zhao D, Yan N, Li J, Zhang H, Liu M, Tang X, Liu X, Deng Y, Song Y, Zhao X. Evasion of the accelerated blood clearance phenomenon by branched PEG lipid derivative coating of nanoemulsions. Int J Pharm. 2022;612:121365. https://doi.org/10.1016/j.ijpharm.2021.121365.

    Article  CAS  PubMed  Google Scholar 

  25. Dézsi L, Fülöp T, Mészáros T, Szénási G, Urbanics R, Vázsonyi C, Örfi E, Rosivall L, Nemes R, Kok RJ, Metselaar JM, Storm G, Szebeni J. Features of complement activation-related pseudoallergy to liposomes with different surface charge and PEGylation: comparison of the porcine and rat responses. J Control Release. 2014;195:2–10. https://doi.org/10.1016/j.jconrel.2014.08.009.

    Article  CAS  PubMed  Google Scholar 

  26. Chiang V, Kan A, Yeung H, Au E, Lau CS, Li PH. Polyethylene glycol allergy: risks of skin testing and complement-mediated anaphylaxis. J Investig Allergol Clin Immunol. 2023;33(1):71–3. https://doi.org/10.18176/jiaci.0813.

    Article  CAS  PubMed  Google Scholar 

  27. Pawliczak R. Alergologia-kompendium. Poznan: Termedia; 2013.

  28. Inoue T, Griffin DM, Huq R, Samuel EL, Ruano SH, Stinnett G, Majid TJ, Beeton C, Tour JM, Pautler RG. Characterization of a novel MR-detectable nanoantioxidant that mitigates the recall immune response. NMR Biomed. 2016;29(10):1436–44. https://doi.org/10.1002/nbm.3565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haddad HF, Burke JA, Scott EA, Ameer GA. Clinical relevance of pre-existing and treatment-induced anti-poly(ethylene glycol) antibodies. Regen Eng Transl Med. 2022;8(1):32–42. https://doi.org/10.1007/s40883-021-00198-y.

    Article  CAS  Google Scholar 

  30. Bent RK, Faihs V, Tizek L, Biedermann T, Zink A, Brockow K. PEG allergy – a COVID-19 pandemic-made problem? A German perspective. World Allergy Organ J. 2022;15(11):100714. https://doi.org/10.1016/j.waojou.2022.100714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stone BD. PEG skin testing for COVID-19 vaccine allergy. J Allergy Clin Immunol Pract. 2021;9(4):1765. https://doi.org/10.1016/j.jaip.2021.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13(9):1257–75. https://doi.org/10.1080/17425247.2016.1182485.

    Article  CAS  PubMed  Google Scholar 

  33. Wenande E, Garvey LH. Immediate-type hypersensitivity to polyethylene glycols: a review. Clin Exp Allergy. 2016;46(7):907–22. https://doi.org/10.1111/cea.12760.

    Article  CAS  PubMed  Google Scholar 

  34. Hasan H, Shaikh OM, Rassekh SR, Howard AF, Goddard K. Comparison of hypersensitivity rates to intravenous and intramuscular PEG-asparaginase in children with acute lymphoblastic leukemia: a meta-analysis and systematic review. Pediatr Blood Cancer. 2017;64(1):81–8. https://doi.org/10.1002/pbc.26200.

    Article  CAS  PubMed  Google Scholar 

  35. Caballero ML, Krantz MS, Quirce S, Phillips EJ, Stone CA. Hidden dangers: recognizing excipients as potential causes of drug and vaccine hypersensitivity reactions. J Allergy Clin Immunol Pract. 2021;9(8):2968–82. https://doi.org/10.1016/j.jaip.2021.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li J, Weir C, Fulton R, Fernando SL. Skin testing and basophil activation testing is useful for assessing immediate reactions to polyethylene glycol-containing vaccines. Vaccin (Basel). 2023;11(2):252. https://doi.org/10.3390/vaccines11020252.

    Article  CAS  Google Scholar 

  37. Brockow K, Mathes S, Fischer J, Volc S, Darsow U, Eberlein B, Biedermann T. Experience with polyethylene glycol allergy-guided risk management for COVID-19 vaccine anaphylaxis. Allergy. 2022;77(7):2200–10. https://doi.org/10.1111/all.15183.

    Article  CAS  PubMed  Google Scholar 

  38. Bruusgaard-Mouritsen MA, Jensen BM, Poulsen LK, Duus Johansen J, Garvey LH. Optimizing investigation of suspected allergy to polyethylene glycols. J Allergy Clin Immunol. 2022;149(1):168–75. https://doi.org/10.1016/j.jaci.2021.05.020.

    Article  CAS  PubMed  Google Scholar 

  39. Vespa S, Del Biondo P, Simeone P, Cavallucci E, Catitti G, Auciello R, De Bellis D, Altomare I, Pierdomenico L, Canonico B, Cicalini I, Angilletta I, Del Boccio P, Pieragostino D, Santilli F, Urbani A, De Laurenzi V, Stuppia L, Lanuti P. Basophil activation test with different polyethylene glycols in patients with suspected PEG hypersensitivity reactions. Int J Mol Sci. 2022;23(23):14592. https://doi.org/10.3390/ijms232314592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thi TTH, Pilkington EH, Nguyen DH, Lee JS, Park KD, Truong NP. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polym (Basel). 2020;12(2):298. https://doi.org/10.3390/polym12020298.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Maria Zofia Lisiecka provided study, find sources, wrote the main manuscript text and prepared figure.

Corresponding author

Correspondence to Maria Zofia Lisiecka.

Ethics declarations

Conflict of interest

The author has no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisiecka, M.Z. Polyethylene glycol and immunology: aspects of allergic reactions and their mechanisms, as well as ways to prevent them in clinical practice. Immunol Res (2024). https://doi.org/10.1007/s12026-024-09473-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12026-024-09473-w

Keywords

Navigation