Skip to main content

Advertisement

Log in

Hormone and reproductive factors and risk of systemic lupus erythematosus: a Mendelian randomized study

  • RESEARCH
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is an autoimmune and inflammatory disease with a risk associated with hormonal and reproductive factors. However, the potential causal effects between these factors and SLE remain unclear. A two-sample Mendelian randomization study was conducted using the published summary data from the genome-wide association study database. Five independent genetic variants associated with hormonal and reproductive factors were selected as instrumental variables: age at menarche, age at natural menopause, estradiol, testosterone, and follistatin. To estimate the causal relationship between these exposure factors and disease outcome, we employed the inverse-variance weighted, weighted median, and MR-Egger methods. In addition, we carried out multiple sensitivity analyses to validate model assumptions. Inverse variance weighted showed that there was a causal association between circulating follistatin and SLE risk (OR = 1.38, 95% CI 1.03 to 1.86, P = 0.033). However, no evidence was found that correlation between AAM (OR = 1.04, 95% CI 0.77 to 1.40, P = 0.798), ANM (OR = 0.99, 95% CI 0.92 to 1.06, P = 0.721), E2 (OR = 1.40, 95% CI 0.14 to 13.56, P = 0.772), T (OR = 1.25, 95% CI 0.70 to 2.28, P = 0.459), and SLE risk. Our study revealed that elevated circulating follistatin associates with an increased risk of SLE. This finding suggests that the regulatory signals mediated by circulating follistatin may provide a potential mechanism relevant to the treatment of SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets analyzed in this study can be retrieved from the public GWAS summary database (https://gwas.mrcieu.ac.uk/). Data are available upon reasonable request. Obtaining the data, you can contact the first author at changrunyu0302@163.com.

Abbreviations

SLE:

Systemic lupus erythematosus

AAM:

Age at menarche

ANM:

Age at natural menopause

E2:

Estradiol

T:

Testosterone

FST:

Follistatin

ER:

Estrogen receptors

BMI:

Body mass index

SES:

Socioeconomic status

OR:

Odds ratio

RR:

Risk ratio

CI:

Confidence interval

GWAS:

Genome-wide association study

IVs:

Instrumental variables

SNP:

Single-nucleotide polymorphism

IVW:

Inverse variance weighted

WM:

Weighted median

LD:

Linkage disequilibrium

MR:

Mendelian randomization

PRESSO:

Pleiotropy Residual Sum and Outlier

GCKR:

Glucokinase regulatory protein

GCK:

Glucokinase

References

  1. Durcan L, O’Dwyer T, Petri M. Management strategies and future directions for systemic lupus erythematosus in adults. Lancet. 2019;393(10188):2332–43. https://doi.org/10.1016/S0140-6736(19)30237-5.

    Article  PubMed  Google Scholar 

  2. Fortuna G, Brennan MT. Systemic lupus erythematosus: epidemiology, pathophysiology, manifestations, and management. Dent Clin North Am. 2013;57(4):631–55. https://doi.org/10.1016/j.cden.2013.06.003.

    Article  PubMed  Google Scholar 

  3. Rees F, Doherty M, Grainge M, et al. The incidence and prevalence of systemic lupus erythematosus in the UK, 1999–2012. Ann Rheum Dis. 2016;75(1):136–41. https://doi.org/10.1136/annrheumdis-2014-206334.

    Article  PubMed  Google Scholar 

  4. Singh JA. In-hospital mortality reduction in systemic lupus erythematosus over 2 decades varied by patient sex and age. Clin Rheumatol. 2021;40(3):1201–3. https://doi.org/10.1007/s10067-020-05563-w.

    Article  PubMed  Google Scholar 

  5. Gergianaki I, Bortoluzzi A, Bertsias G. Update on the epidemiology, risk factors, and disease outcomes of systemic lupus erythematosus. Best Pract Res Clin Rheumatol. 2018;32(2):188–205. https://doi.org/10.1016/j.berh.2018.09.004.

    Article  PubMed  Google Scholar 

  6. Kiriakidou M, Ching CL. Systemic lupus erythematosus. Ann Intern Med. 2020;172(11):ITC81–96. https://doi.org/10.7326/AITC202006020.

    Article  PubMed  Google Scholar 

  7. Rubin RL. Drug-induced lupus. Expert Opin Drug Saf. 2015;14(3):361–78. https://doi.org/10.1517/14740338.2015.995089.

    Article  CAS  PubMed  Google Scholar 

  8. Nusbaum JS, Mirza I, Shum J, et al. Sex differences in systemic lupus erythematosus: epidemiology, clinical considerations, and disease pathogenesis. Mayo Clin Proc. 2020;95(2):384–94. https://doi.org/10.1016/j.mayocp.2019.09.012.

    Article  CAS  PubMed  Google Scholar 

  9. Braga A, Barros T, Faria R, et al. Systemic lupus erythematosus and pregnancy: a retrospective single-center study of 215 pregnancies from Portugal. Lupus. 2021;30(13):2165–75. https://doi.org/10.1177/09612033211050340.

    Article  CAS  PubMed  Google Scholar 

  10. Moroni G, Ponticelli C. Pregnancy in women with systemic lupus erythematosus (SLE). Eur J Intern Med. 2016;32:7–12. https://doi.org/10.1016/j.ejim.2016.04.005.

    Article  PubMed  Google Scholar 

  11. Costenbader KH, Feskanich D, Stampfer MJ, et al. Reproductive and menopausal factors and risk of systemic lupus erythematosus in women. Arthritis Rheum. 2007;56(4):1251–62. https://doi.org/10.1002/art.22510.

    Article  PubMed  Google Scholar 

  12. Parks CG, Santos AD, Barbhaiya M, Costenbader KH. Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best Pract Res Clin Rheumatol. 2017;31(3):306–20. https://doi.org/10.1016/j.berh.2017.09.005.

  13. Alpízar-Rodríguez D, Romero-Díaz J, Sánchez-Guerrero J, et al. Age at natural menopause among patients with systemic lupus erythematosus. Rheumatology (Oxford). 2014;53(11):2023–9. https://doi.org/10.1093/rheumatology/keu222.

    Article  CAS  PubMed  Google Scholar 

  14. Sánchez-Guerrero J, Liang MH, Karlson EW, et al. Postmenopausal estrogen therapy and the risk for developing systemic lupus erythematosus. Ann Intern Med. 1995;122(6):430–3. https://doi.org/10.7326/0003-4819-122-6-199503150-00005.

    Article  PubMed  Google Scholar 

  15. Grimes DA, LeBolt SA, Grimes KR, et al. Systemic lupus erythematosus and reproductive function: a case-control study. Am J Obstet Gynecol. 1985;153(2):179–86. https://doi.org/10.1016/0002-9378(85)90108-5.

    Article  CAS  PubMed  Google Scholar 

  16. Cooper GS, Dooley MA, Treadwell EL, et al. Hormonal and reproductive risk factors for development of systemic lupus erythematosus: results of a population-based, case-control study. Arthritis Rheum. 2002;46(7):1830–9. https://doi.org/10.1002/art.10365.

    Article  CAS  PubMed  Google Scholar 

  17. Kim JW, Kim HA, Suh CH, et al. Sex hormones affect the pathogenesis and clinical characteristics of systemic lupus erythematosus. Front Med (Lausanne). 2022;9:906475. https://doi.org/10.3389/fmed.2022.906475.

    Article  PubMed  Google Scholar 

  18. Ramezankhani R, Minaei N, Haddadi M, et al. The impact of sex on susceptibility to systemic lupus erythematosus and rheumatoid arthritis; a bioinformatics point of view. Cell Signal. 2021;88:110171. https://doi.org/10.1016/j.cellsig.2021.110171.

    Article  CAS  PubMed  Google Scholar 

  19. Constantin AM, Baicus C. Estradiol in systemic lupus erythematosus. Acta Endocrinol (Buchar). 2023;19(2):274–6. https://doi.org/10.4183/aeb.2023.274.

    Article  CAS  PubMed  Google Scholar 

  20. Dong W, Peng Q, Liu Z, et al. Estrogen plays an important role by influencing the NLRP3 inflammasome. Biomed Pharmacother. 2023;167:115554. https://doi.org/10.1016/j.biopha.2023.115554.

    Article  CAS  PubMed  Google Scholar 

  21. Wu D, Ye L, Zhang X, et al. Characteristics of steroid hormones in systemic lupus erythematosus revealed by GC/MS-based metabolic profiling. Front Endocrinol (Lausanne). 2023;14:1164679. https://doi.org/10.3389/fendo.2023.1164679.

    Article  PubMed  Google Scholar 

  22. Torricelli M, Bellisai F, Novembri R, et al. High levels of maternal serum IL-17 and activin A in pregnant women affected by systemic lupus erythematosus. Am J Reprod Immunol. 2011;66(2):84–9. https://doi.org/10.1111/j.1600-0897.2011.00978.x.

    Article  CAS  PubMed  Google Scholar 

  23. Wu C, Borné Y, Gao R, et al. Elevated circulating follistatin associates with an increased risk of type 2 diabetes. Nat Commun. 2021;12(1):6486. https://doi.org/10.1038/s41467-021-26536-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Emdin CA, Khera AV, Kathiresan S. Mendelian Randomization. JAMA. 2017;318(19):1925–6. https://doi.org/10.1001/jama.2017.17219.

    Article  PubMed  Google Scholar 

  25. Sekula P, Del Greco MF, Pattaro C, et al. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol. 2016;27(11):3253–65. https://doi.org/10.1681/ASN.2016010098.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22. https://doi.org/10.1093/ije/dyg070.

    Article  PubMed  Google Scholar 

  27. Perry JR, Day F, Elks CE, et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature. 2014;514(7520):92–7. https://doi.org/10.1038/nature13545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Day FR, Ruth KS, Thompson DJ, et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat Genet. 2015;47(11):1294–303. https://doi.org/10.1038/ng.3412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruth KS, Day FR, Tyrrell J, et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med. 2020;26(2):252–8. https://doi.org/10.1038/s41591-020-0751-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Folkersen L, Gustafsson S, Wang Q, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metab. 2020;2(10):1135–48. https://doi.org/10.1038/s42255-020-00287-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bentham J, Morris DL, Graham DSC, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet. 2015;47(12):1457–64. https://doi.org/10.1038/ng.3434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen L, Yang H, Li H, et al. Insights into modifiable risk factors of cholelithiasis: a Mendelian randomization study. Hepatology. 2022;75(4):785–96. https://doi.org/10.1002/hep.32183.

    Article  CAS  PubMed  Google Scholar 

  33. Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: a review. Res Synth Methods. 2019;10(4):486–96. https://doi.org/10.1002/jrsm.1346.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Birney E. Mendelian randomization. Cold Spring Harb Perspect Med. 2022;12(4):a041302. https://doi.org/10.1101/cshperspect.a041302.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol Eur J Epidemiol. 2017;32(5):377–89. https://doi.org/10.1007/s10654-017-0255-x.

    Article  PubMed  Google Scholar 

  36. Hansen JS, Rutti S, Arous C, et al. Circulating follistatin is liver-derived and regulated by the glucagon-to-insulin ratio. J Clin Endocrinol Metab. 2016;101(2):550–60. https://doi.org/10.1210/jc.2015-3668.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao C, Qiao C, Tang RH, et al. Overcoming insulin insufficiency by forced follistatin expression in β-cells of db/db mice. Mol Ther. 2015;23(5):866–74. https://doi.org/10.1038/mt.2015.29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brouwers MCGJ, Jacobs C, Bast A, et al. Modulation of glucokinase regulatory protein: a double-edged sword? Trends Mol Med. 2015;21(10):583–94. https://doi.org/10.1016/j.molmed.2015.08.004.

    Article  CAS  PubMed  Google Scholar 

  39. Beer NL, Tribble ND, McCulloch LJ, et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet. 2009;18(21):4081–8. https://doi.org/10.1093/hmg/ddp357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. López Rodríguez M, Kaminska D, Lappalainen K, et al. Identification and characterization of a FOXA2-regulated transcriptional enhancer at a type 2 diabetes intronic locus that controls GCKR expression in liver cells. Genome Med. 2017;9(1):63. https://doi.org/10.1186/s13073-017-0453-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Diószegi Á, Lőrincz H, Kaáli E, et al. Role of altered metabolism of triglyceride-rich lipoprotein particles in the development of vascular dysfunction in systemic lupus erythematosus. Biomolecules. 2023;13(3):401. https://doi.org/10.3390/biom13030401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang J, Lu L, Tian X, et al. Lipidomics revealed aberrant lipid metabolism caused by inflammation in cardiac tissue in the early stage of systemic lupus erythematosus in a murine model. Metabolites. 2022;12(5):415. https://doi.org/10.3390/metabo12050415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang S, Zhang Z, Cui Y, et al. Dyslipidemia is associated with inflammation and organ involvement in systemic lupus erythematosus. Clin Rheumatol. 2023;42(6):1565–72. https://doi.org/10.1007/s10067-023-06539-2.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sun W, Li P, Cai J, et al. Lipid metabolism: immune regulation and therapeutic prospectives in systemic lupus erythematosus. Front Immunol. 2022;18(13):860586. https://doi.org/10.3389/fimmu.2022.860586.

    Article  CAS  Google Scholar 

  45. Ozaki T, Kamiyama N, Saechue B, et al. Comprehensive lipidomics of lupus-prone mice using LC-MS/MS identifies the reduction of palmitoylethanolamide that suppresses TLR9-mediated inflammation. Genes Cells. 2022;27(7):493–504. https://doi.org/10.1111/gtc.12944.

    Article  CAS  PubMed  Google Scholar 

  46. Jeong H, Lee B, Han SJ, et al. Glucose metabolic reprogramming in autoimmune diseases. Anim Cells Syst (Seoul). 2023;27(1):149–58. https://doi.org/10.1080/19768354.2023.2234986.

    Article  CAS  PubMed  Google Scholar 

  47. García-González M, Gómez-Bernal F, Quevedo-Abeledo JC, et al. The complement system is linked to insulin resistance in patients with systemic lupus erythematosus. Clin Exp Rheumatol. 2023. https://doi.org/10.55563/clinexprheumatol/t2k0hn.

    Article  PubMed  Google Scholar 

  48. Arnaud L, Nordin A, Lundholm H, et al. Effect of corticosteroids and cyclophosphamide on sex hormone profiles in male patients with systemic lupus erythematosus or systemic sclerosis. Arthritis Rheumatol. 2017;69(6):1272–9. https://doi.org/10.1002/art.40057.

    Article  CAS  PubMed  Google Scholar 

  49. Kim WU, Min SY, Hwang SH, et al. Effect of oestrogen on T cell apoptosis in patients with systemic lupus erythematosus. Clin Exp Immunol. 2010;161(3):453–8. https://doi.org/10.1111/j.1365-2249.2010.04194.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. González DA, Díaz BB, Pérez MD, et al. Sex hormones and autoimmunity. Immunol Lett. 2010;133(1):6–13. https://doi.org/10.1016/j.imlet.2010.07.001.

Download references

Acknowledgements

The authors express their gratitude to the participants and investigators of the ReproGen Consortium. The authors also appreciate the ReproGen Consortium and UK Biobank for releasing the GWAS summary statistics.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81973778).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: X.D. and R.C.; methodology: R.C., S.X., and X.D.; software: R.C., S.X., and Y.J.; validation: R.C. and Y.J.; formal analysis: S.X., R.C., and X.X.; investigation: Y.J.; resources: X.D.; data curation: R.C., S.X., and L.C.; writing—original draft preparation: R.C. and S.Q.; writing—review and editing: R.C., S.X., and X.D.; visualization: R.C., C.H., and Y.J.; supervision: Y.S. and X.D.; project administration: X.D.; funding acquisition: X.D. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Yufeng Shi or Xinghong Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The aggregated statistical data used in this study are sourced from publicly available databases (https://gwas.mrcieu.ac.uk/). All original studies have obtained approval from the relevant ethical review committees. Furthermore, this study does not utilize individual-level data. Therefore, no new ethical approval is required.

Consent to participate

Participants have provided informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12486 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, R., Xiang, S., Jin, Y. et al. Hormone and reproductive factors and risk of systemic lupus erythematosus: a Mendelian randomized study. Immunol Res (2024). https://doi.org/10.1007/s12026-024-09470-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12026-024-09470-z

Keywords

Navigation