Skip to main content

Advertisement

Log in

Role of LINC00240 on T-helper 9 differentiation in allergic rhinitis through influencing DNMT1-dependent methylation of PU.1

  • Research
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Background

Allergic rhinitis (AR) is a common allergic disease with increasing prevalence globally. However, the molecular mechanism underlying AR pathogenesis remains largely undefined.

Methods

Peripheral blood and nasal mucosa samples obtained from patients with AR (n = 22), and ovalbumin-induced AR mouse model (n = 8 per group) were prepared for subsequent detection. qRT-PCR and western blot were used to detect the expression of LINC00240, miR-155-5p, PU.1 and other key molecules. ELISA assay and flow cytometry were employed to evaluate the secretion of IL-9 and T-helper 9 (Th9) cell ratio, respectively. Bioinformatics analysis, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and luciferase reporter assays were employed to further elucidate the regulatory network of LINC00240/miR-155-5p/DNMT1. The methylation of PU.1 promoter was assessed by methylation-specific PCR (MSP). This signaling axis was further validated in the mouse model of AR.

Results

LINC00240 was downregulated, while miR-155-5p and PU.1 were upregulated in the peripheral blood and nasal mucosa of AR patients, as well as in AR mice. This was accompanied with the increased ratio of Th9 cells and elevated IL-9 secretion. Mechanistically, LINC00240 served as a miR-155-5p sponge, and DNMT1 was a target of miR-155-5p. In addition, DNMT1 mediated the methylation of PU.1 promoter. In vivo studies verified that LINC00240 mitigated AR progression, possibly via miR-155-5p/DNMT1/PU.1-dependent Th9 differentiation.

Conclusion

The involvement of LINC00240 in AR pathogenesis is closely associated with Th9 differentiation through modulating DNMT1-dependent methylation of PU.1 by sponging miR-155-5p.

Highlights

LINC00240 was downregulated, while miR-155-5p and PU.1 were upregulated in the serum and nasal mucosa of AR patients and mice.

The percentage of Th9 cells and IL-9 secretion were elevated in AR patients and mice.

LINC00240 served as a miR-155-5p sponge, and DNMT1 was a target of miR-155-5p.

DNMT1 mediated the methylation of PU.1 promoter.

LINC00240/miR-155-5p/DNMT1/PU.1 axis is involved in AR pathogenesis via modulating Th9 differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data underlying this article will be shared on reasonable request to the corresponding author.

Abbreviations

5-Aza:

5-Azacytidine

AD:

Atopic dermatitis

AR:

Allergic rhinitis

ChIP:

Chromatin immunoprecipitation

DNMT:

DNA methyltransferase

ELISA:

Enzyme-linked immunosorbent assay

FISH:

Fluorescence in situ hybridization

GC:

Gastric cancer

HCC:

Hepatocellular carcinoma

H&E:

Hematoxylin & Eosin

IgE:

Immunoglobulin E

IL-4:

Interleukin-4

ILC2s:

Group 2 innate lymphoid cells

lncRNA:

Long non-coding RNA

MSP:

Methylation-specific PCR

MUT:

Mutated

OVA:

Ovalbumin

NPC:

Nasopharyngeal carcinoma

NSCLC:

Non-small cell lung cancer

RIP:

RNA immunoprecipitation

SPF:

Specific-pathogen-free

TGF-β:

Transforming growth factor-β

Th9:

T-helper 9

WT:

Wild type

References

  1. Hoyte FCL, Nelson HS. Recent advances in allergic rhinitis. F1000Res. 2018;7. https://doi.org/10.12688/f1000research.15367.1.

  2. Meng Y, Wang C, Zhang L. Recent developments and highlights in allergic rhinitis. Allergy. 2019;74(12):2320–8. https://doi.org/10.1111/all.14067.

    Article  PubMed  Google Scholar 

  3. Ciprandi G, De Amici M, Murdaca G, Fenoglio D, Ricciardolo F, Marseglia G, et al. Serum interleukin-17 levels are related to clinical severity in allergic rhinitis. Allergy. 2009;64(9):1375–8. https://doi.org/10.1111/j.1398-9995.2009.02010.x.

    Article  CAS  PubMed  Google Scholar 

  4. Pilette C, Jacobson MR, Ratajczak C, Detry B, Banfield G, VanSnick J, et al. Aberrant dendritic cell function conditions Th2-cell polarization in allergic rhinitis. Allergy. 2013;68(3):312–21. https://doi.org/10.1111/all.12090.

    Article  CAS  PubMed  Google Scholar 

  5. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 2008;9(12):1341–6. https://doi.org/10.1038/ni.1659.

    Article  CAS  PubMed  Google Scholar 

  6. Angkasekwinai P. Th9 cells in allergic Disease. Curr Allergy Asthma Rep. 2019;19(5):29. https://doi.org/10.1007/s11882-019-0860-8.

    Article  PubMed  Google Scholar 

  7. Kaplan MH, Hufford MM, Olson MR. The development and in vivo function of T helper 9 cells. Nat Rev Immunol. 2015;15(5):295–307. https://doi.org/10.1038/nri3824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S, et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated Colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol. 2014;15(7):676–86. https://doi.org/10.1038/ni.2920.

    Article  CAS  PubMed  Google Scholar 

  9. Wang XQ, Hu GH, Kang HY, Shen Y, Ke X, Hong SL. High frequency of T helper type 9 cells in Chinese patients with allergic rhinitis. Asian Pac J Allergy Immunol. 2015;33(4):301–7. https://doi.org/10.12932/AP0609.33.4.2015.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang X, Zhang X, Liu J, Liu J, Zhu X, Yang C. Involvement of T-Helper 9 activation in a mouse model of allergic Rhinitis. Med Sci Monit. 2018;24:4704–10. https://doi.org/10.12659/MSM.908302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li L, Deng J, Huang T, Liu K, Jiang X, Chen X, et al. IRF4 transcriptionally activate HOTAIRM1, which in turn regulates IRF4 expression, thereby affecting Th9 cell differentiation and involved in allergic rhinitis. Gene. 2022;813:146118. https://doi.org/10.1016/j.gene.2021.146118.

    Article  CAS  PubMed  Google Scholar 

  12. DiStefano JK. The emerging role of long noncoding RNAs in Human Disease. Methods Mol Biol. 2018;1706:91–110. https://doi.org/10.1007/978-1-4939-7471-9_6.

    Article  CAS  PubMed  Google Scholar 

  13. Wei X, Xu M, Wang C, Fang S, Zhang Y, Wang W. Genome-wide analysis of long noncoding RNA expression profile in nasal mucosa with allergic rhinitis. BMC Med Genomics. 2021;14(1):100. https://doi.org/10.1186/s12920-021-00949-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bu WJ, Fang Z, Li WL, Wang X, Dong MJ, Tao QY, et al. LINC00240 sponges miR-4465 to promote proliferation, migration, and invasion of hepatocellular carcinoma cells via HGF/c-MET signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(20):10452–61. https://doi.org/10.26355/eurrev_202010_23397.

    Article  PubMed  Google Scholar 

  15. Zhang Y, Li X, Zhang J, Liang H. Natural killer T cell cytotoxic activity in Cervical cancer is facilitated by the LINC00240/microRNA-124-3p/STAT3/MICA axis. Cancer Lett. 2020;474:63–73. https://doi.org/10.1016/j.canlet.2019.12.038.

    Article  CAS  PubMed  Google Scholar 

  16. Ku GW, Kang Y, Yu SL, Park J, Park S, Jeong IB, et al. LncRNA LINC00240 suppresses invasion and migration in non-small cell Lung cancer by sponging miR-7-5p. BMC Cancer. 2021;21(1):44. https://doi.org/10.1186/s12885-020-07755-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang G, Zhang Z, Xia C. Long non-coding RNA LINC00240 promotes gastric cancer progression via modulating miR-338-5p/METTL3 axis. Bioengineered. 2021;12(2):9678–91. https://doi.org/10.1080/21655979.2021.1983276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen X, Wu G, Qing J, Li C, Chen X, Shen J. LINC00240 knockdown inhibits nasopharyngeal carcinoma progress by targeting miR-26a-5p. J Clin Lab Anal. 2022;36(5):e24424. https://doi.org/10.1002/jcla.24424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng S, Tang Q, Xie S, Wen S, Zhang H, Xie Z, et al. The role of noncoding RNA in Airway Allergic Diseases through Regulation of T Cell subsets. Mediators Inflamm. 2022;2022:6125698. https://doi.org/10.1155/2022/6125698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu XH, Zhao SJ, Huang WQ, Huang LH, Luo XY, Long SL. Long non-coding RNA MALAT1 promotes Th2 differentiation by regulating microRNA-135b-5p/GATA-3 axis in children with allergic rhinitis. Kaohsiung J Med Sci. 2022;38(10):971–80. https://doi.org/10.1002/kjm2.12587.

    Article  CAS  PubMed  Google Scholar 

  21. Yang C, Shangguan C, Cai C, Xu J, Qian X. LncRNA HCP5 participates in the Tregs functions in allergic rhinitis and drives Airway Mucosal Inflammatory response in the nasal epithelial cells. Inflammation. 2022;45(3):1281–97. https://doi.org/10.1007/s10753-022-01620-5.

    Article  CAS  PubMed  Google Scholar 

  22. Suojalehto H, Toskala E, Kilpelainen M, Majuri ML, Mitts C, Lindstrom I, et al. MicroRNA profiles in nasal mucosa of patients with allergic and nonallergic rhinitis and Asthma. Int Forum Allergy Rhinol. 2013;3(8):612–20. https://doi.org/10.1002/alr.21179.

    Article  PubMed  Google Scholar 

  23. Malmhall C, Alawieh S, Lu Y, Sjostrand M, Bossios A, Eldh M, et al. MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung. J Allergy Clin Immunol. 2014;133(5):1429–38. https://doi.org/10.1016/j.jaci.2013.11.008.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu YQ, Liao B, Liu YH, Wang Z, Zhu XH, Chen XB, et al. MicroRNA-155 plays critical effects on Th2 factors expression and allergic inflammatory response in type-2 innate lymphoid cells in allergic rhinitis. Eur Rev Med Pharmacol Sci. 2019;23(10):4097–109. https://doi.org/10.26355/eurrev_201905_17911.

    Article  PubMed  Google Scholar 

  25. Hammad NM, Nabil F, Elbehedy EM, Sedeek R, Gouda MI, Arafa MA, et al. Role of MicroRNA-155 as a potential biomarker for allergic Rhinitis in Children. Can Respir J. 2021;2021:5554461. https://doi.org/10.1155/2021/5554461.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhu Y, Ye F, Fu Y, Zhu X, Wang Z, Wu S, et al. MicroRNA-155-5p regulates the Th1/Th2 cytokines expression and the apoptosis of group 2 innate lymphoid cells via targeting TP53INP1 in allergic rhinitis. Int Immunopharmacol. 2021;101(Pt B):108317. https://doi.org/10.1016/j.intimp.2021.108317.

    Article  CAS  PubMed  Google Scholar 

  27. Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol. 2010;11(6):527–34. https://doi.org/10.1038/ni.1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scadding GK, Kariyawasam HH, Scadding G, Mirakian R, Buckley RJ, Dixon T, et al. BSACI guideline for the diagnosis and management of allergic and non-allergic rhinitis (revised Edition 2017; First Edition 2007). Clin Exp Allergy. 2017;47(7):856–89. https://doi.org/10.1111/cea.12953.

    Article  CAS  PubMed  Google Scholar 

  29. Cordero P, Campion J, Milagro FI, Goyenechea E, Steemburgo T, Javierre BM, et al. Leptin and TNF-alpha promoter methylation levels measured by MSP could predict the response to a low-calorie diet. J Physiol Biochem. 2011;67(3):463–70. https://doi.org/10.1007/s13105-011-0084-4.

    Article  CAS  PubMed  Google Scholar 

  30. Agache I, Akdis CA. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic Diseases. J Clin Invest. 2019;129(4):1493–503. https://doi.org/10.1172/JCI124611.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Eifan AO, Durham SR. Pathogenesis of rhinitis. Clin Exp Allergy. 2016;46(9):1139–51. https://doi.org/10.1111/cea.12780.

    Article  CAS  PubMed  Google Scholar 

  32. Georas SN, Guo J, De Fanis U, Casolaro V. T-helper cell type-2 regulation in allergic Disease. Eur Respir J. 2005;26(6):1119–37. https://doi.org/10.1183/09031936.05.00006005.

    Article  CAS  PubMed  Google Scholar 

  33. Hoppenot D, Malakauskas K, Lavinskiene S, Bajoriuniene I, Kalinauskaite V, Sakalauskas R. Peripheral blood Th9 cells and eosinophil apoptosis in Asthma patients. Med (Kaunas). 2015;51(1):10–7. https://doi.org/10.1016/j.medici.2015.01.001.

    Article  Google Scholar 

  34. Shin JH, Kim DH, Kim BY, Kim SW, Hwang SH, Lee J, et al. Anti-interleukin-9 antibody increases the Effect of Allergen-Specific Immunotherapy in Murine allergic rhinitis. Allergy Asthma Immunol Res. 2017;9(3):237–46. https://doi.org/10.4168/aair.2017.9.3.237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Galli SJ, Tsai M. IgE and mast cells in allergic Disease. Nat Med. 2012;18(5):693–704. https://doi.org/10.1038/nm.2755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma Z, Teng Y, Liu X, Li J, Mo J, Sha M, et al. Identification and functional profiling of differentially expressed long non-coding RNAs in nasal mucosa with allergic Rhinitis. Tohoku J Exp Med. 2017;242(2):143–50. https://doi.org/10.1620/tjem.242.143.

    Article  CAS  PubMed  Google Scholar 

  37. Ma Y, Shi L, Zheng C. Microarray analysis of lncRNA and mRNA expression profiles in mice with allergic rhinitis. Int J Pediatr Otorhinolaryngol. 2018;104:58–65. https://doi.org/10.1016/j.ijporl.2017.10.046.

    Article  PubMed  Google Scholar 

  38. Ma Y, Shi L, Zhao K, Zheng C. lncRNA FR215775 regulates Th2 differentiation in Murine allergic rhinitis. J Immunol Res. 2022;2022:7783481. https://doi.org/10.1155/2022/7783481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma Z, Lian H, Lin X, Li Y. LncRNA MIAT promotes allergic inflammation and symptoms by targeting MiR-10b-5p in allergic Rhinitis mice. Am J Rhinol Allergy. 2021;35(6):781–9. https://doi.org/10.1177/1945892421998143.

    Article  PubMed  Google Scholar 

  40. Wu HY, Liu K, Zhang JL. LINC00240/miR-155 axis regulates function of trophoblasts and M2 macrophage polarization via modulating oxidative stress-induced pyroptosis in preeclampsia. Mol Med. 2022;28(1):119. https://doi.org/10.1186/s10020-022-00531-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Srivastava M, Kaplan MH. Transcription factors in the development and pro-allergic function of mast cells. Front Allergy. 2021;2:679121. https://doi.org/10.3389/falgy.2021.679121.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hamza AM, Omar SS, Abo El-Wafa RA, Elatrash MJ. Expression levels of transcription factor PU.1 and interleukin-9 in atopic dermatitis and their relation to Disease severity and eruption types. Int J Dermatol. 2017;56(5):534–9. https://doi.org/10.1111/ijd.13579.

    Article  CAS  PubMed  Google Scholar 

  43. Ai S, Lin Y, Zheng J, Zhuang X. Xingbi Gel ameliorates allergic Rhinitis by regulating IFN-gamma gene promoter methylation in CD4 + T cells via the ERK-DNMT pathway. Front Surg. 2020;7:619053. https://doi.org/10.3389/fsurg.2020.619053.

    Article  PubMed  Google Scholar 

  44. Cui X, Guo Y, Wang Q, Li X. MiR-199-3p-Dnmt3a-STAT3 signalling pathway in ovalbumin-induced allergic rhinitis. Exp Physiol. 2019;104(8):1286–95. https://doi.org/10.1113/EP087751.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Funding

This study was funded by the Applied Research training program of Science and Technology Department of Jiangxi province (No.20212BAG70031), the National Natural Science Foundation of China (No. 82160211) and the Jiangxi Provincial Natural Science Foundation (No. 20202ACBL206013).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study: C. Y. Acquisition of data: J. L.; K. L.; Y. Q. Analysis and interpretation of data: X. J.; J. D.; W. W. Drafting the manuscript: J. L. Revising the manuscript critically for important intellectual content: C. Y. All authors reviewed the manuscript.

Corresponding author

Correspondence to ChunPing Yang.

Ethics declarations

Ethics approval

This study has obtained approval of the Ethics Committee of The Second Affiliated Hospital of Nanchang University and the patient’s written informed consent.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Jiang, X., Liu, K. et al. Role of LINC00240 on T-helper 9 differentiation in allergic rhinitis through influencing DNMT1-dependent methylation of PU.1. Immunol Res 72, 197–211 (2024). https://doi.org/10.1007/s12026-023-09435-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-023-09435-8

Keywords

Navigation