Skip to main content
Log in

Association study between killer immunoglobulin-like receptor polymorphisms and susceptibility to COVID-19 disease: a systematic review and meta-analysis

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a known virus that leads to a respiratory disease called coronavirus disease 19 (COVID-19). Natural killer (NK) cells, as members of innate immunity, possess crucial roles in restricting viral infections, including COVID-19. Their functions and development depend on receiving signals through various receptors, of which killer cell immunoglobulin-like receptors (KIRs) belong to the most effective ones. Different studies investigated the association between KIR gene content and susceptibility to COVID-19. Since previous studies have yielded contradictory results, we designed this meta-analysis study to draw comprehensive conclusions about COVID-19 risk and KIR gene association. According to PRISMA guidelines, a systematic search was performed in the electronic databases to find all studies investigating KIR gene contents in COVID-19 patients before March 2023. Any association between KIR genes and COVID-19 risk was determined by calculating pooled odds ratio (OR) and 95% confidence interval (CI). After applying the inclusion and exclusion criteria, 1673 COVID-19 patients and 1526 healthy controls from eight studies were included in this meta-analysis. As the main results, we observed a positive association between the 2DL3 (OR = 1.48, 95% CI = 1.17–1.88, P < 0.001) and susceptibility to COVID-19 and a negative association between the 2DP1 and the risk for COVID-19 (OR = 0.48, 95% CI = 0.23–0.99, P = 0.049). This meta-analysis demonstrated that KIR2DL3, as a member of iKIRs, might be associated with an increased risk of COVID-19 disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020;91(1):157–60. https://doi.org/10.23750/abm.v91i1.9397.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Muhareb R, Giacaman R. Tracking COVID-19 responsibly. Lancet. 2020. https://doi.org/10.1016/s0140-6736(20)30693-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pal M, Berhanu G, Desalegn C, Kandi V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update. Cureus. 2020;12(3):e7423. https://doi.org/10.7759/cureus.7423.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Payne S. Family Coronaviridae. Viruses. 2017;149–58. https://doi.org/10.1016/B978-0-12-803109-4.00017-9.

  5. Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. COVID-19 (novel coronavirus 2019) - recent trends. Eur Rev Med Pharmacol Sci. 2020;24(4):2006–11. https://doi.org/10.26355/eurrev_202002_20378.

    Article  CAS  PubMed  Google Scholar 

  6. Lotfi R, Kalmarzi RN, Roghani SA. A review on the immune responses against novel emerging coronavirus (SARS-CoV-2). Immunol Res. 2021;69(3):213–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mohammed RN, Tamjidifar R, Rahman HS, Adili A, Ghoreishizadeh S, Saeedi H, et al. A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19). Cell Commun Signal. 2022;20(1):79. https://doi.org/10.1186/s12964-022-00856-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hosseini A, Hashemi V, Shomali N, Asghari F, Gharibi T, Akbari M, et al. Innate and adaptive immune responses against coronavirus. Biomed Pharmacother. 2020;132:110859. https://doi.org/10.1016/j.biopha.2020.110859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Agrati C, Carsetti R, Bordoni V, Sacchi A, Quintarelli C, Locatelli F, et al. The immune response as a double-edged sword: the lesson learnt during the COVID-19 pandemic. Immunology. 2022;167(3):287–302. https://doi.org/10.1111/imm.13564.

    Article  CAS  PubMed  Google Scholar 

  10. Saad N, Moussa S. Immune response to COVID-19 infection: a double-edged sword. Immunol Med. 2021;44(3):187–96. https://doi.org/10.1080/25785826.2020.1870305.

    Article  CAS  PubMed  Google Scholar 

  11. Taylor PC, Adams AC, Hufford MM, de la Torre I, Winthrop K, Gottlieb RL. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol. 2021;21(6):382–93. https://doi.org/10.1038/s41577-021-00542-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alhumaid S, Al Mutair A, Alali J, Al Dossary N, Albattat SH, Al HajjiMohammed SM, et al. Efficacy and safety of tixagevimab/cilgavimab to prevent COVID-19 (pre-exposure prophylaxis): a systematic review and meta-analysis. Diseases. 2022;10(4) https://doi.org/10.3390/diseases10040118.

  13. Kyriazopoulou E, Panagopoulos P, Metallidis S, Dalekos GN, Poulakou G, Gatselis N, et al. An open label trial of anakinra to prevent respiratory failure in COVID-19. Elife. 2021:10. https://doi.org/10.7554/eLife.66125.

  14. Vlaar APJ, de Bruin S, Busch M, Timmermans S, van Zeggeren IE, Koning R, et al. Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. Lancet Rheumatol. 2020;2(12):e764–e73. https://doi.org/10.1016/s2665-9913(20)30341-6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Monk PD, Marsden RJ, Tear VJ, Brookes J, Batten TN, Mankowski M, et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir Med. 2021;9(2):196–206. https://doi.org/10.1016/s2213-2600(20)30511-7.

    Article  CAS  PubMed  Google Scholar 

  16. Di Vito C, Calcaterra F, Coianiz N, Terzoli S, Voza A, Mikulak J, et al. Natural killer cells in SARS-CoV-2 infection: pathophysiology and therapeutic implications. Front Immunol. 2022;13:888248. https://doi.org/10.3389/fimmu.2022.888248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mikulak J, Bruni E, Oriolo F, Di Vito C, Mavilio D. Hepatic natural killer cells: organ-specific sentinels of liver immune homeostasis and physiopathology. Front Immunol. 2019;10:946. https://doi.org/10.3389/fimmu.2019.00946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10.

    Article  CAS  PubMed  Google Scholar 

  19. Dębska-Zielkowska J, Moszkowska G, Zieliński M, Zielińska H, Dukat-Mazurek A, Trzonkowski P, Stefańska K. KIR receptors as key regulators of nk cells activity in health and disease. Cells. 2021;10(7). https://doi.org/10.3390/cells10071777.

  20. Sun PD. Structure and function of natural-killer-cell receptors. Immunol Res. 2003;27:539–48.

    Article  CAS  PubMed  Google Scholar 

  21. Rizzo S, Schiuma G, Beltrami S, Gentili V, Rizzo R, Bortolotti D. Role of KIR receptor in NK regulation during viral infections. Immuno. 2021;1(3):305–31.

    Article  Google Scholar 

  22. Béziat V, Hilton HG, Norman PJ, Traherne JA. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunology. 2017;150(3):248–64.

    Article  PubMed  Google Scholar 

  23. Pende D, Falco M, Vitale M, Cantoni C, Vitale C, Munari E, et al. Killer Ig-like receptors (KIRs): their role in NK cell modulation and developments leading to their clinical exploitation. Front Immunol. 2019;10:1179. https://doi.org/10.3389/fimmu.2019.01179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee HR, Baek KH. Role of natural killer cells for immunotherapy in chronic myeloid leukemia (Review). Oncol Rep. 2019;41(5):2625–35. https://doi.org/10.3892/or.2019.7059.

    Article  CAS  PubMed  Google Scholar 

  25. Cronk JM, Fafoutis E, Brown MG. Licensing natural killers for antiviral immunity. Pathogens. 2021;10(7). https://doi.org/10.3390/pathogens10070908.

  26. Boudreau JE, Hsu KC. Natural killer cell education and the response to infection and cancer therapy: stay tuned. Trends Immunol. 2018;39(3):222–39. https://doi.org/10.1016/j.it.2017.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rascle P, Woolley G, Jost S, Manickam C, Reeves RK. NK cell education: physiological and pathological influences. Front Immunol. 2023;14:1087155. https://doi.org/10.3389/fimmu.2023.1087155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol. 2017;8:1124. https://doi.org/10.3389/fimmu.2017.01124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shan Z, Huang J, Liao Q, Huang K, Wang M, Xu R, et al. Association of killer cell immunoglobulin-like receptors with spontaneous clearance of hepatitis C virus in the Chinese population. Transfusion. 2018;58(4):1028–35. https://doi.org/10.1111/trf.14527.

    Article  CAS  PubMed  Google Scholar 

  30. Ligotti ME, Aiello A, Accardi G, Calabrò A, Ciaccio M, Colomba C, et al. Distribution of KIR genes and their HLA ligands in different viral infectious diseases: frequency study in Sicilian population. Int J Mol Sci. 2022;23(24):15466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jackson E, Zhang CX, Kiani Z, Lisovsky I, Tallon B, Del Corpo A, et al. HIV exposed seronegative (HESN) compared to HIV infected individuals have higher frequencies of telomeric killer immunoglobulin-like receptor (KIR) B motifs; contribution of KIR B motif encoded genes to NK cell responsiveness. PLoS One. 2017;12(9):e0185160. https://doi.org/10.1371/journal.pone.0185160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bernal E, Gimeno L, Alcaraz MJ, Quadeer AA, Moreno M, Martínez-Sánchez MV, et al. Activating killer-cell immunoglobulin-like receptors are associated with the severity of coronavirus disease 2019. J Infect Dis. 2021;224(2):229–40. https://doi.org/10.1093/infdis/jiab228.

    Article  CAS  PubMed  Google Scholar 

  33. Littera R, Chessa L, Deidda S, Angioni G, Campagna M, Lai S, et al. Natural killer-cell immunoglobulin-like receptors trigger differences in immune response to SARS-CoV-2 infection. PLoS One. 2021;16(8):e0255608. https://doi.org/10.1371/journal.pone.0255608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lesan V, Bewarder M, Metz C, Becker A, Mang S, Regitz E, et al. Killer immunoglobulin-like receptor 2DS5 is associated with recovery from coronavirus disease 2019. Intensive Care Med Exp. 2021;9(1):45. https://doi.org/10.1186/s40635-021-00409-4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hajeer A, Jawdat D, Massadeh S, Aljawini N, Abedalthagafi MS, Arabi YM, Alaamery M. Association of KIR gene polymorphisms with COVID-19 disease. Clin Immunol. 2022;234:108911. https://doi.org/10.1016/j.clim.2021.108911.

    Article  CAS  PubMed  Google Scholar 

  36. Maruthamuthu S, Rajalingam K, Kaur N, Morvan MG, Soto J, Lee N, et al. Individualized constellation of killer cell immunoglobulin-like receptors and cognate HLA class I ligands that controls natural killer cell antiviral immunity predisposes COVID-19. Front Genet. 2022;13:845474. https://doi.org/10.3389/fgene.2022.845474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu S, Shao Z, Ni W, Sun P, Qiao J, Wan H, et al. The KIR2DL2/HLA-C1C1 Gene pairing is associated with an increased risk of SARS-CoV-2 infection. Front Immunol. 2022;13:919110. https://doi.org/10.3389/fimmu.2022.919110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alomar S, Alkhuriji A, Alkhulaifi FM, Mansour L, Al-Jurayyan A, Aldossari GS, et al. Relationship between KIR genotypes and HLA-ligands with SARS-CoV-2 infection in the Saudi population. J King Saud Univ Sci. 2023;35(1):102416. https://doi.org/10.1016/j.jksus.2022.102416.

    Article  PubMed  Google Scholar 

  39. Campbell KS, Purdy AK. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology. 2011;132(3):315–25. https://doi.org/10.1111/j.1365-2567.2010.03398.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Long EO, Sik Kim H, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol. 2013;31:227–58.

    Article  CAS  PubMed  Google Scholar 

  41. Quatrini L, Della Chiesa M, Sivori S, Mingari MC, Pende D, Moretta L. Human NK cells, their receptors and function. Eur J Immunol. 2021;51(7):1566–79. https://doi.org/10.1002/eji.202049028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH. Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol. 2011;89(2):216–24. https://doi.org/10.1038/icb.2010.78.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Dr. Peyman Bemani, Assistant Professor of Medical Immunology, for his valuable remarks in revising the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KK conceived and designed the study. NM and SM screened publications, extracted data, and wrote the first draft of the manuscript. SHT performed the statistical analysis and wrote part of the manuscript draft. DK, SMe, and KK reviewed and made edits to the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kurosh Kalantar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teshnizi, S.H., Mirzazadeh, S., Mashhadi, N. et al. Association study between killer immunoglobulin-like receptor polymorphisms and susceptibility to COVID-19 disease: a systematic review and meta-analysis. Immunol Res 72, 175–184 (2024). https://doi.org/10.1007/s12026-023-09428-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-023-09428-7

Keywords

Navigation