Skip to main content
Log in

ATP11C promotes the differentiation of pre-B cells into immature B cells but does not affect their IL-7-dependent proliferation

  • ORIGINAL ARTICLE
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The P4-type ATPases are believed to function as flippases that contribute to the organization of the asymmetric aminophospholipid distribution on the plasma membranes of eukaryotes by their ability to internalize specific phospholipids from the outer leaflet to the inner leaflet. Despite the existence of 14 members of the P4-type ATPases in humans and 15 in mice, their roles in the immune system have not been fully understood. So far, ATP11C was shown to be important for B cells, and mice deficient for ATP11C had a developmental arrest at the pro-B to pre-B cell transition stage of B cell development. Using an ATP11C-deficient pre-B cell line generated through CRISPR/Cas9 engineering, we here tested the role of ATP11C in pre-B cells in vitro and showed that ablation of ATP11C in pre-B cells causes a defect in the flippase activity. We further demonstrated that loss of ATP11C does not impede the proliferation of pre-B cells in response to IL-7. However, pre-B cells lacking ATP11C failed to differentiate into immature B cells upon removal of IL-7. These results suggest that disruption of lipid asymmetry by loss of ATP11C in pre-B cells may control the switch from proliferation to differentiation in pre-B cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

Ig:

Immunoglobulin

Pre-BCR:

Precursor B cell receptor

IL-7:

Interleukin-7

PS:

Phosphatidylserine

PE:

Phosphatidylethanolamine

References

  1. Nutt SL, Kee BL. The transcriptional regulation of B cell lineage commitment. Immunity. 2007;26(6):715–25. https://doi.org/10.1016/j.immuni.2007.05.010. (S1074-7613(07)00289-0 [pii]).

    Article  CAS  PubMed  Google Scholar 

  2. Hardy RR, Hayakawa K. B cell development pathways. Annu Rev Immunol. 2001;19:595–621. https://doi.org/10.1146/annurev.immunol.19.1.595.

    Article  CAS  PubMed  Google Scholar 

  3. Herzog S, Reth M, Jumaa H. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol. 2009;9(3):195–205. https://doi.org/10.1038/nri2491. (nri2491 [pii]).

    Article  CAS  PubMed  Google Scholar 

  4. Clark MR, Mandal M, Ochiai K, Singh H. Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat Rev Immunol. 2014;14(2):69–80. https://doi.org/10.1038/nri3570.

    Article  CAS  PubMed  Google Scholar 

  5. Hendriks RW, Middendorp S. The pre-BCR checkpoint as a cell-autonomous proliferation switch. Trends Immunol. 2004;25(5):249–56. https://doi.org/10.1016/j.it.2004.02.011.

    Article  CAS  PubMed  Google Scholar 

  6. Reth M, Nielsen P. Signaling circuits in early B-cell development. Adv Immunol. 2014;122:129–75. https://doi.org/10.1016/B978-0-12-800267-4.00004-3.

    Article  CAS  PubMed  Google Scholar 

  7. Kitamura D, Roes J, Kuhn R, Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature. 1991;350(6317):423–6. https://doi.org/10.1038/350423a0.

    Article  CAS  PubMed  Google Scholar 

  8. Kitamura D, Kudo A, Schaal S, Muller W, Melchers F, Rajewsky K. A critical role of lambda 5 protein in B cell development. Cell. 1992;69(5):823–31.

    Article  CAS  PubMed  Google Scholar 

  9. Torres RM, Flaswinkel H, Reth M, Rajewsky K. Aberrant B cell development and immune response in mice with a compromised BCR complex. Science. 1996;272(5269):1804–8.

    Article  CAS  PubMed  Google Scholar 

  10. Gong S, Nussenzweig MC. Regulation of an early developmental checkpoint in the B cell pathway by Ig beta. Science. 1996;272(5260):411–4.

    Article  CAS  PubMed  Google Scholar 

  11. Mundt C, Licence S, Shimizu T, Melchers F, Martensson IL. Loss of precursor B cell expansion but not allelic exclusion in VpreB1/VpreB2 double-deficient mice. J Exp Med. 2001;193(4):435–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pelanda R, Braun U, Hobeika E, Nussenzweig MC, Reth M. B cell progenitors are arrested in maturation but have intact VDJ recombination in the absence of Ig-alpha and Ig-beta. J Immunol. 2002;169(2):865–72.

    Article  CAS  PubMed  Google Scholar 

  13. Rolink AG, Winkler T, Melchers F, Andersson J. Precursor B cell receptor-dependent B cell proliferation and differentiation does not require the bone marrow or fetal liver environment. J Exp Med. 2000;191(1):23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen D, Tang TX, Deng H, Yang XP, Tang ZH. Interleukin-7 biology and its effects on immune cells: mediator of generation, differentiation, survival, and homeostasis. Front Immunol. 2021;12:747324. https://doi.org/10.3389/fimmu.2021.747324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Samitas K, Lotvall J, Bossios A. B cells: from early development to regulating allergic diseases. Arch Immunol Ther Exp (Warsz). 2010;58(3):209–25. https://doi.org/10.1007/s00005-010-0073-2.

    Article  PubMed  Google Scholar 

  16. van der Mark VA, Elferink RP, Paulusma CC. P4 ATPases: flippases in health and disease. Int J Mol Sci. 2013;14(4):7897–922. https://doi.org/10.3390/ijms14047897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hankins HM, Baldridge RD, Xu P, Graham TR. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic. 2015;16(1):35–47. https://doi.org/10.1111/tra.12233.

    Article  CAS  PubMed  Google Scholar 

  18. Shin HW, Takatsu H. Phosphatidylserine exposure in living cells. Crit Rev Biochem Mol Biol. 2020;55(2):166–78. https://doi.org/10.1080/10409238.2020.1758624.

    Article  CAS  PubMed  Google Scholar 

  19. Yabas M, Teh CE, Frankenreiter S, Lal D, Roots CM, Whittle B, et al. ATP11C is critical for the internalization of phosphatidylserine and differentiation of B lymphocytes. Nat Immunol. 2011;12(5):441–9. https://doi.org/10.1038/ni.2011. (ni.2011 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Siggs OM, Arnold CN, Huber C, Pirie E, Xia Y, Lin P, et al. The P4-type ATPase ATP11C is essential for B lymphopoiesis in adult bone marrow. Nat Immunol. 2011;12(5):434–40. https://doi.org/10.1038/ni.2012. (ni.2012 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yabas M, Jing W, Shafik S, Broer S, Enders A. ATP11C facilitates phospholipid translocation across the plasma membrane of all leukocytes. PLoS One. 2016;11(1):e0146774. https://doi.org/10.1371/journal.pone.0146774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yabas M, Coupland LA, Cromer D, Winterberg M, Teoh NC, D’Rozario J, et al. Mice deficient in the putative phospholipid flippase ATP11C exhibit altered erythrocyte shape, anemia, and reduced erythrocyte life span. J Biol Chem. 2014;289(28):19531–7. https://doi.org/10.1074/jbc.C114.570267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siggs OM, Schnabl B, Webb B, Beutler B. X-linked cholestasis in mouse due to mutations of the P4-ATPase ATP11C. Proc Natl Acad Sci U S A. 2011;108(19):7890–5. https://doi.org/10.1073/pnas.1104631108. (1104631108 [pii]).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Flemming A, Brummer T, Reth M, Jumaa H. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat Immunol. 2003;4(1):38–43. https://doi.org/10.1038/ni862.

    Article  CAS  PubMed  Google Scholar 

  25. Lindner SE, Lohmuller M, Kotkamp B, Schuler F, Knust Z, Villunger A, et al. The miR-15 family reinforces the transition from proliferation to differentiation in pre-B cells. EMBO Rep. 2017;18(9):1604–17. https://doi.org/10.15252/embr.201643735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hutter K, Lohmuller M, Jukic A, Eichin F, Avci S, Labi V, et al. SAFB2 Enables the processing of suboptimal stem-loop structures in clustered primary miRNA transcripts. Mol Cell. 2020;78(5):876-89 e6. https://doi.org/10.1016/j.molcel.2020.05.011.

    Article  CAS  PubMed  Google Scholar 

  27. Jensen MS, Costa S, Gunther-Pomorski T, Lopez-Marques RL. Cell-based lipid flippase assay employing fluorescent lipid derivatives. Methods Mol Biol. 2016;1377:371–82. https://doi.org/10.1007/978-1-4939-3179-8_33.

    Article  CAS  PubMed  Google Scholar 

  28. Quah BJ, Parish CR. New and improved methods for measuring lymphocyte proliferation in vitro and in vivo using CFSE-like fluorescent dyes. J Immunol Methods. 2012;379(1–2):1–14. https://doi.org/10.1016/j.jim.2012.02.012.

    Article  CAS  PubMed  Google Scholar 

  29. Jing W, Yabas M, Broer A, Coupland L, Gardiner EE, Enders A, et al. Calpain cleaves phospholipid flippase ATP8A1 during apoptosis in platelets. Blood Adv. 2019;3(3):219–29. https://doi.org/10.1182/bloodadvances.2018023473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science. 2014;344(6188):1164–8. https://doi.org/10.1126/science.1252809.

    Article  CAS  PubMed  Google Scholar 

  31. Takatsu H, Tanaka G, Segawa K, Suzuki J, Nagata S, Nakayama K, et al. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane. J Biol Chem. 2014;289(48):33543–56. https://doi.org/10.1074/jbc.M114.593012.

    Article  CAS  PubMed  Google Scholar 

  32. Arashiki N, Takakuwa Y, Mohandas N, Hale J, Yoshida K, Ogura H, et al. ATP11C is a major flippase in human erythrocytes and its defect causes congenital hemolytic anemia. Haematologica. 2016;101(5):559–65. https://doi.org/10.3324/haematol.2016.142273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Segawa K, Yanagihashi Y, Yamada K, Suzuki C, Uchiyama Y, Nagata S. Phospholipid flippases enable precursor B cells to flee engulfment by macrophages. Proc Natl Acad Sci U S A. 2018;115(48):12212–7. https://doi.org/10.1073/pnas.1814323115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Milne CD, Paige CJ. IL-7: a key regulator of B lymphopoiesis. Semin Immunol. 2006;18(1):20–30. https://doi.org/10.1016/j.smim.2005.10.003. (S1044-5323(05)00085-0 [pii].).

    Article  CAS  PubMed  Google Scholar 

  35. Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC, et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med. 1994;180(5):1955–60.

    Article  CAS  PubMed  Google Scholar 

  36. von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med. 1995;181(4):1519–26.

    Article  Google Scholar 

  37. Yabas M. B cell deficiency and anaemia caused by mutations in the murine Atp11c gene. Canberra, Australia: PhD, The Australian National University; 2014.

    Google Scholar 

  38. Marshall AJ, Fleming HE, Wu GE, Paige CJ. Modulation of the IL-7 dose-response threshold during pro-B cell differentiation is dependent on pre-B cell receptor expression. J Immunol. 1998;161(11):6038–45.

    Article  CAS  PubMed  Google Scholar 

  39. Fleming HE, Paige CJ. Pre-B cell receptor signaling mediates selective response to IL-7 at the pro-B to pre-B cell transition via an ERK/MAP kinase-dependent pathway. Immunity. 2001;15(4):521–31.

    Article  CAS  PubMed  Google Scholar 

  40. Fu C, Turck CW, Kurosaki T, Chan AC. BLNK: a central linker protein in B cell activation. Immunity. 1998;9(1):93–103. https://doi.org/10.1016/s1074-7613(00)80591-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sebastian Herzog from the Medical University of Innsbruck, Austria, for providing wk3 cells, reagents, and his excellent advice and help during the generation of the ATP11C-deficient pre-B cell line as well as for critical reading of the manuscript. We also thank Michael Lohmüller, Felix Eichin, and Katharina Hutter from the Medical University of Innsbruck, Austria, for sharing their scientific and technical expertise.

Funding

This study was supported by the Trakya University Scientific Research Projects Coordination Unit (Project Number 2019/280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Yabas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yabas, M., Bostanci, A. & Aral, S. ATP11C promotes the differentiation of pre-B cells into immature B cells but does not affect their IL-7-dependent proliferation. Immunol Res 71, 609–616 (2023). https://doi.org/10.1007/s12026-023-09364-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-023-09364-6

Keywords

Navigation