Skip to main content

Advertisement

Log in

Reduction in experimental autoimmune thyroiditis by IgG Fc fragments bearing regRF epitopes

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Previously, we identified a new immunoregulatory factor, the production of which provides rats with resistance to certain experimental autoimmune diseases. It has been named regulatory rheumatoid factor (regRF). RegRF inhibits the expansion of CD4 T lymphocytes by killing activated cells. CD4 T cells are essential for antibody production against a majority of antigens and for the generation of cytotoxic T cells; therefore, regRF is an attractive therapeutic biotarget for T-cell and antibody-mediated autoimmune diseases. RegRF is anti-idiotypic antibodies that have a shared paratope in addition to an individual paratope. Epitopes specific to the shared regRF paratope (regRF epitopes) can be obtained on conformers of IgG Fc fragments. Immunization with Fc fragments carrying regRF epitopes reduces rat collagen–induced arthritis and diminishes experimental autoimmune encephalomyelitis. The aim of this study was to determine whether IgG Fc fragments bearing regRF epitopes suppress experimental autoimmune thyroiditis (EAT). Four weeks after EAT induction, rats were immunized with IgG Fc fragments exhibiting regRF epitopes. Histology studies of the thyroid were performed 4 weeks later. Thyroid function and other parameters were also evaluated. Treatment of rats with Fc fragments bearing regRF epitopes decreased the number of rats affected by EAT, significantly decreased the extent of thyroid damage, prevented thyroid metaplasia, and restored normal thyroid hormone production. Therefore, RegRF is a promising biotarget in autoimmune thyroiditis, and Fc fragments bearing regRF epitopes are a potential therapeutic agent for that condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mincer LD, Jialal I. Hashimoto thyroiditis. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK459262/. Last Update: September 28, 2021.

  2. Antonelli A, Ferrari SM, Corrado A, Domenicantonio AD, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev. 2015. https://doi.org/10.1016/j.autrev.2014.10.016.

    Article  Google Scholar 

  3. Eghtedari B, Correa R. Levothyroxine. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK539808/. Last Update: August 6, 2021.

  4. Wiersinga WM, Duntas L, Fadeyev V, Fadeyev V, Nygaard B, Vanderpump MPJ. 2012 ETA guidelines: the use of LT4 + L-T3 in the treatment of hypothyroidism. Eur Thyroid J. 2012; https://doi.org/10.1159/000339444.

  5. Ferrari SM, Fallahi P, Elia G, Ragusa F, Camastra S, Paparo SR, Giusti C, Gonnella D, Ruffilli I, Shoenfeld Y, Antonelli A. Novel therapies for thyroid autoimmune diseases: an update. Best Pract Res Clin Endocrinol Metab. 2020. https://doi.org/10.1016/j.beem.2019.101366.

    Article  Google Scholar 

  6. Chen K, Wei Y, Sharp GC, Braley-Mullen H. Decreasing TNF-alpha results in less fibrosis and earlier resolution of granulomatous experimental autoimmune thyroiditis. J Leukoc Biol. 2007. https://doi.org/10.1189/jlb.0606402.

    Article  Google Scholar 

  7. Ferrari SM, Fallahi P, Vita R, Antonelli A, Benvenga S. Peroxisome proliferator-activated receptor-γ in thyroid autoimmunity. PPAR Res. 2015. https://doi.org/10.1155/2015/232818.

    Article  Google Scholar 

  8. Moore-Carrasco RR, Bustamante MP, Guerra OG, Madariaga EL, Escudero VM, Arellano CA, Palomo I. Peroxisome proliferator-activated receptors: targets for the treatment of metabolic illnesses (review). Mol Med Report. 2008. https://doi.org/10.3892/mmr.1.3.317.

    Article  Google Scholar 

  9. Pan A, Gerriets V. Etanercept. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK545252/. Accessed 10 May 2022

  10. Pascart T, Ducoulombier V, Roquette D, Perimenis P, Coquerelle P, Maury F, Houvenagel E. Autoimmune thyroid disorders during anti-TNF alpha therapy: coincidence, paradoxical event or marker of immunogenicity? Joint Bone Spine. 2014. https://doi.org/10.1016/j.jbspin.2013.11.007.

    Article  Google Scholar 

  11. Wang SH, Chen G, Fan Y, Antwerp MV, Baker JR Jr. Tumor necrosis factor-related apoptosis-inducing ligand inhibits experimental autoimmune thyroiditis by the expansion of CD4+CD25+ regulatory T cells. Endocrinology. 2009. https://doi.org/10.1210/en.2008-1389.

    Article  Google Scholar 

  12. Stolyarova E, Beduleva L, Menshikov I, Snigiryev A, Khramova T. Mechanism by which regulatory rheumatoid factor prevents experimental autoimmune encephalomyelitis. Endocr Metab Immune Disord Drug Targets. 2018; https://doi.org/10.2174/1871530318666180308123350.

  13. Beduleva L, Khramova T, Menshikov I, Stolyarova E, Pavlova S. Combined action of anti-CD4 autoantibodies and rheumatoid factor in the development of CD4 lymphocytopenia in rats immunized with HIV-1 gp120. AIDS Res Hum Retroviruses. 2016. https://doi.org/10.1089/aid.2015.0358.

    Article  Google Scholar 

  14. Beduleva L, Khramova T, Sidorov A, Terentiev A, Abisheva N, Menshikova D, Ivanov P, Fomina K, Gorbushina A, Shklyaeva N, Menshikov I. Suppression of experimental autoimmune encephalomyelitis by IgG Fc fragments bearing regRF epitopes. Int Immunopharmacol. 2021. https://doi.org/10.1016/j.intimp.2021.108309.

    Article  Google Scholar 

  15. Beduleva L, Menshikov I, Stolyarova E, Fomina K, Lobanova O, Ivanov P, Terentiev A. Rheumatoid factor in idiotypic regulation of autoimmunity. Int J Rheum Dis. 2015. https://doi.org/10.1111/1756-185X.12335.

    Article  Google Scholar 

  16. Sidorov A, Beduleva L, Menshikov I, Terentiev A, Stolyarova E, Abisheva N. Fc fragments of immunoglobulin G are an inductor of regulatory rheumatoid factor and a promising therapeutic agent for rheumatic diseases. Int J Biol Macromol. 2017. https://doi.org/10.1016/j.ijbiomac.2016.10.081.

    Article  Google Scholar 

  17. Kong YM. Experimental autoimmune thyroiditis in the mouse. Curr Protoc Immunol. 2007. https://doi.org/10.1002/0471142735.im1507s78.

    Article  Google Scholar 

  18. Xia N, Chen G, Liu M, Ye X, Pan Y, Ge J, Mao Y, Wang H, Wang J, Xie S. Anti-inflammatory effects of luteolin on experimental autoimmune thyroiditis in mice. 2016. https://doi.org/10.3892/etm.2016.3854.

    Article  Google Scholar 

  19. Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013. https://doi.org/10.4103/0976-500X.119726.

    Article  Google Scholar 

  20. Cao Y, Jin X, Sun Y, & Wen W. Therapeutic effect of mesenchymal stem cell on Hashimoto’s thyroiditis in a rat model by modulating Th17/Treg cell balance. Autoimmunity. 2019. https://doi.org/10.1080/08916934.2019.1697689.

  21. Jiao H & Ren H. The effects of vasoactive intestinal peptide in the rat model of experimental autoimmune neuritis and the implications for treatment of acute inflammatory demyelinating polyradiculoneuropathy or Guillain–Barré syndrome. Drug Des Devel Ther. 2018; https://doi.org/10.2147/dddt.s175331.

  22. Vállez García D, Doorduin J, de Paula FD, Dierckx RAJO, de Vries EFJ. Effect of preventive and curative fingolimod treatment regimens on microglia activation and disease progression in a rat model of multiple sclerosis. J Neuroimmune Pharmacol. 2017. https://doi.org/10.1007/s11481-017-9741-x.

    Article  Google Scholar 

  23. Julious SA Sample size of 12 per group rule of thumb for a pilot study. Pharm Stat. 2005; https://doi.org/10.1002/pst.185.

  24. Braley-Mullen H, Johnson M, Sharp GC, Kyriakos M. Induction of experimental autoimmune thyroiditis in mice with in vitro activated splenic T cells. Cell Immunol. 1985. https://doi.org/10.1016/0008-8749(85)90394-6.

    Article  Google Scholar 

  25. Boechat LHB, Zollner RL. Reactivity of anti-thyroid antibodies to thyroglobulin tryptic fragments: comparison of autoimmune and non-autoimmune thyroid diseases. Braz J Med Biol Res. 1999. https://doi.org/10.1590/S0100-879X1999000400012.

    Article  Google Scholar 

  26. Shulman S, Armenia JP. Studies on thyroid proteins. I. The components of hog thyroid tissue, and the preparation of purified thyroglobulin by column chromatography. J Biological Chemistry. 1963;238:2723–31.

    Article  CAS  Google Scholar 

  27. Hoshino T, Ui N. Comparative studies on the properties of thyroglobulins from various animal species. Endocrinol Jpn. 1970. https://doi.org/10.1507/endocrj1954.17.521.

    Article  Google Scholar 

  28. Thodou E, Canberk S, Schmitt F. Challenges in cytology specimens with Hürthle cells. Front Endocrinol (Lausanne). 2021. https://doi.org/10.3389/fendo.2021.701877.

    Article  Google Scholar 

  29. Cannon J. The significance of Hürthle cells in thyroid disease. Oncologist. 2011. https://doi.org/10.1634/theoncologist.2010-0253.

    Article  Google Scholar 

  30. Dayan CM, Daniels GH. Chronic autoimmune thyroiditis. N Engl J Med. 1996. https://doi.org/10.1056/NEJM199607113350206.

    Article  Google Scholar 

  31. Guyetant S, Wion-Barbot N, Rousselet M, Franc B, Bigorgne J, Saint-Andre J. C-Cell hyperplasia associated with chronic lymphocytic thyroiditis: a retrospective quantitative study of 112 cases. Hum Pathol. 1994. https://doi.org/10.1016/0046-8177(94)90124-4.

    Article  Google Scholar 

  32. Baloch ZW, Livolsi VA. C-Cells and their associated lesions and conditions: a pathologists perspective. Turk Patoloji Derg. 2015. https://doi.org/10.5146/tjpath.2015.

    Article  Google Scholar 

  33. Ludgate M. Animal models of autoimmune thyroid disease. In: Weetman AP, editor. Autoimmune diseases in endocrinology. Totowa: Humana Press; 2008. p. 79–93.

    Chapter  Google Scholar 

  34. Coppieters K, Herrath M, Homann D. Animal models of organ-specific autoimmune disease. In: Rose NR, Mackay IR, editors. The autoimmune diseases. 6th ed. London: Elsevier/Academic Press; 2020. p. 493–511.

    Chapter  Google Scholar 

  35. Kojima K, Yamada T, Ohgaki S. Crossreaction of monoclonal antiidiotypic antibodies specific for human antithyroglobulin antibody with the Fc portion of human IgG. J Rheumatol. 1988;15(4):587–92.

    CAS  Google Scholar 

  36. Ehlers M, Thiel A, Bernecker C, Porwol D, Papewalis C, Willenberg HS, Schinner S, Hautzel H, Scherbaum WA, Schott M. Evidence of a combined cytotoxic thyroglobulin and thyroperoxidase epitope-specific cellular immunity in Hashimoto’s thyroiditis. J Clin Endocrinol Metab. 2012. https://doi.org/10.1210/jc.2011-2178.

    Article  Google Scholar 

  37. Akasu F, Morita T, Resetkova E, Yoshikawa N, Carayon P, Volpé R. Sensitization of T lymphocytes to thyroglobulin and thyroperoxidase in autoimmune thyroid diseases. Autoimmunity. 1993. https://doi.org/10.3109/08916939309079227.

    Article  Google Scholar 

  38. Toyoda N, Nishikawa M, Iwasaka T. Anti-thyroglobulin antibodies. Nihon Rinsho. 1999;57(8):1810–4.

    CAS  Google Scholar 

  39. Lian X, Bai Y, Sun M, Guo Z, Dai W. Clinical validity of anti-thyroperoxidase antibody and anti-thyroglobulin antibody. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2004;26(6):677–81.

    CAS  Google Scholar 

  40. Nishihara E, Amino N, Kudo T, Ito M, Fukata S, Nishikawa M, Nakamura H, Miyauchi A. Comparison of thyroglobulin and thyroid peroxidase antibodies measured by five different kits in autoimmune thyroid diseases. Endocr J. 2017. https://doi.org/10.1507/endocrj.EJ17-0164.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Jennifer Guernsey for editorial assistance.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project number 0827–2020-0012).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LB. Investigation: LB, AS, AT, VV, KF. Writing—original draft: LB, AS. Writing—review and editing: IM.

Corresponding author

Correspondence to Liubov Beduleva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beduleva, L., Sidorov, A., Terentiev, A. et al. Reduction in experimental autoimmune thyroiditis by IgG Fc fragments bearing regRF epitopes. Immunol Res 71, 83–91 (2023). https://doi.org/10.1007/s12026-022-09337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-022-09337-1

Keywords

Navigation