Skip to main content
Log in

MiR-29a-3p negatively regulates circulating Tfh memory cells in patients with Graves’ disease by targeting ICOS

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small endogenous noncoding RNAs that regulate genome expression posttranscriptionally and are involved in autoimmune diseases. Previous studies have indicated that follicular helper T (Tfh) cells play a critical role in the pathogenesis of Graves’ disease (GD). However, the molecular mechanisms that contribute to circulating Tfh memory cell response in GD patients remain incompletely understood. This study aimed to investigate the role of miRNAs on circulating Tfh memory cells in GD patients. Herein, our data showed that the proportion of circulating Tfh memory cells, the transcript levels of IL-21, and the plasma concentrations of IL-21 were increased in the peripheral blood from GD patients. We also found that inducible co-stimulator (ICOS) expression, an important molecule expressed on Tfh cells, were significantly augmented in the peripheral blood mononuclear cells (PBMCs) from GD patients and positively correlated with the percentage of circulating Tfh memory cells and the transcript levels of IL-21 in GD. Intriguingly, miRNA sequencing screened miR-29a-3p expression was downregulated and inversely correlated with ICOS expression and the frequency of circulating Tfh memory cells in patients with GD. Luciferase assay demonstrated that ICOS was the direct target gene of miR-29a-3p, and miR-29a-3p could inhibit ICOS at both transcriptional and translational levels. Overexpression of miR-29a-3p reduced the proportion of circulating Tfh memory cells. Moreover, miR-29a-3p expression negatively correlated with serum concentrations of TSH receptor antibody (TRAb) in GD patients. Collectively, our results demonstrate that miR-29a-3p emerges as a post-transcriptional brake to limit circulating Tfh memory cell response in GD patients and may be involved in the pathogenesis of GD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The sequencing datasets of miRNAs can be found in the GEO/GSE183576, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183576. The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Weetman AP. Autoimmune thyroid disease: propagation and progression. Eur J Endocrinol. 2003;148:1–9.

    Article  CAS  PubMed  Google Scholar 

  2. Subekti I, Pramono LA. Current diagnosis and management of Graves' disease. Acta Med Indones. 2018;50:177–82.

    PubMed  Google Scholar 

  3. Smith TJ, Hegedus L. Graves' disease. N Engl J Med. 2016;375:1552–65.

    Article  PubMed  Google Scholar 

  4. Weetman AP. Graves' disease. N Engl J Med. 2000;343:1236–48.

    Article  CAS  PubMed  Google Scholar 

  5. Bartalena L. Diagnosis and management of Graves disease: a global overview. Nat Rev Endocrinol. 2013;9:724–34.

    Article  CAS  PubMed  Google Scholar 

  6. Burch HB, Cooper DS. Management of Graves disease: a review. JAMA. 2015;314:2544–54.

    Article  CAS  PubMed  Google Scholar 

  7. Barbesino G, Tomer Y. Clinical review: clinical utility of TSH receptor antibodies. J Clin Endocrinol Metab. 2013;98:2247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen J, Tian J, Tang X, Rui K, Ma J, Mao C, Liu Y, Lu L, Xu H, Wang S. MiR-346 regulates CD4(+)CXCR5(+) T cells in the pathogenesis of Graves' disease. Endocrine. 2015;49:752–60.

    Article  CAS  PubMed  Google Scholar 

  9. Tomer Y. Mechanisms of autoimmune thyroid diseases: from genetics to epigenetics. Annu Rev Pathol. 2014;9:147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, Forster R. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192:1545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu D, Walker LSK, Liu Z, Linterman MA, Li Z. Targeting TFH cells in human diseases and vaccination: rationale and practice. Nat Immunol. 2022;23:1157–68.

    Article  CAS  PubMed  Google Scholar 

  12. Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature. 1999;397:263–6.

    Article  CAS  PubMed  Google Scholar 

  13. Haynes NM, Allen CD, Lesley R, Ansel KM, Killeen N, Cyster JG. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J Immunol. 2007;179:5099–108.

    Article  CAS  PubMed  Google Scholar 

  14. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, Dent AL, Craft J, Crotty S. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science. 2009;325:1006–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD, Wang YH, Dong C. Bcl6 mediates the development of T follicular helper cells. Science. 2009;325:1001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, Srivastava M, Linterman M, Zheng L, Simpson N, Ellyard JI, Parish IA, Ma CS, Li QJ, Parish CR, Mackay CR, Vinuesa CG. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity. 2009;31:457–68.

    Article  CAS  PubMed  Google Scholar 

  17. Chtanova T, Tangye SG, Newton R, Frank N, Hodge MR, Rolph MS, Mackay CR. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol. 2004;173:68–78.

    Article  CAS  PubMed  Google Scholar 

  18. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, Foucat E, Dullaers M, Oh S, Sabzghabaei N, Lavecchio EM, Punaro M, Pascual V, Banchereau J, Ueno H. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011;34:108–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu J, Wu J, Xia X, Peng H, Wang S. Follicular helper T cells: potential therapeutic targets in rheumatoid arthritis. Cell Mol Life Sci. 2021;78:5095–106.

    Article  CAS  PubMed  Google Scholar 

  20. Simpson N, Gatenby PA, Wilson A, Malik S, Fulcher DA, Tangye SG, Manku H, Vyse TJ, Roncador G, Huttley GA, Goodnow CC, Vinuesa CG, Cook MC. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 2010;62:234–44.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Yuan X, Li X, Cui D, Xie J. Constitutive changes in circulating follicular helper T cells and their subsets in patients with Graves' disease. J Immunol Res. 2018;2018:8972572.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dong C, Nurieva RI. Regulation of immune and autoimmune responses by ICOS. J Autoimmun. 2003;21:255–60.

    Article  PubMed  Google Scholar 

  23. Swallow MM, Wallin JJ, Sha WC. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFalpha. Immunity. 1999;11:423–32.

    Article  CAS  PubMed  Google Scholar 

  24. Weber JP, Fuhrmann F, Feist RK, Lahmann A, Al Baz MS, Gentz LJ, Vu Van D, Mages HW, Haftmann C, Riedel R, Grun JR, Schuh W, Kroczek RA, Radbruch A, Mashreghi MF, Hutloff A. ICOS maintains the T follicular helper cell phenotype by down-regulating Kruppel-like factor 2. J Exp Med. 2015;212:217–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang F, Yan T, Chen L, Chen X, Liu T, Shen S, Li T, Gao L, Wang T, Sun J, Liu C, Wu H, Zhang X, Chen L. Involvement of inducible costimulator ligand (ICOSL) expression in thyroid tissue in hyperthyroidism of Graves' disease patients. J Clin Immunol. 2012;32:1253–61.

    Article  CAS  PubMed  Google Scholar 

  26. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  27. Maul J, Alterauge D, Baumjohann D. MicroRNA-mediated regulation of T follicular helper and T follicular regulatory cell identity. Immunol Rev. 2019;288:97–111.

    Article  CAS  PubMed  Google Scholar 

  28. Jafarzadeh A, Naseri A, Shojaie L, Nemati M, Jafarzadeh S, Bannazadeh Baghi H, Hamblin MR, Akhlagh SA, Mirzaei H. MicroRNA-155 and antiviral immune responses. Int Immunopharmacol. 2021;101:108188.

    Article  CAS  PubMed  Google Scholar 

  29. Bartel DP. Metazoan MicroRNAs. Cell. 2018;173:20–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martinez-Hernandez R, Serrano-Somavilla A, Ramos-Levi A, Sampedro-Nunez M, Lens-Pardo A, Munoz De Nova JL, Trivino JC, Gonzalez MU, Torne L, Casares-Arias J, Martin-Cofreces NB, Sanchez-Madrid F, Marazuela M. Integrated miRNA and mRNA expression profiling identifies novel targets and pathological mechanisms in autoimmune thyroid diseases. EBioMedicine. 2019;50:329–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yin L, Zeng C, Yao J, Shen J. Emerging roles for noncoding RNAs in autoimmune thyroid disease. Endocrinology. 2020;161.

  32. Yao Q, Wang X, He W, Song Z, Wang B, Zhang J, Qin Q. Circulating microRNA-144-3p and miR-762 are novel biomarkers of Graves' disease. Endocrine. 2019;65:102–9.

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Ding X, Xiong S, Wang X, Tang X, Wang L, Wang S, Peng H. Circulating microRNA expression profiling identifies miR-125a-5p promoting T helper 1 cells response in the pathogenesis of Hashimoto's thyroiditis. Front Immunol. 2020;11:1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmitt N, Bentebibel SE, Ueno H. Phenotype and functions of memory Tfh cells in human blood. Trends Immunol. 2014;35:436–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luthje K, Kallies A, Shimohakamada Y, Belz GT, Light A, Tarlinton DM, Nutt SL. The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nat Immunol. 2012;13:491–8.

    Article  PubMed  Google Scholar 

  36. Weber JP, Fuhrmann F, Hutloff A. T-follicular helper cells survive as long-term memory cells. Eur J Immunol. 2012;42:1981–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ueno H. T follicular helper cells in human autoimmunity. Curr Opin Immunol. 2016;43:24–31.

    Article  CAS  PubMed  Google Scholar 

  38. Rapoport B, McLachlan SM. Graves' hyperthyroidism is antibody-mediated but is predominantly a Th1-type cytokine disease. J Clin Endocrinol Metab. 2014;99:4060–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cai Y, Wang Z, Liu X, Wei L, Li S, Zheng X, Yang T, Xu X. The frequency of intrathyroidal follicular helper T cells varies with the progression of Graves' disease and Hashimoto's thyroiditis. J Immunol Res. 2022;2022:4075522.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang J, Ren M, Zeng H, Guo Y, Zhuang Z, Feng Z, Yan H, Xu M, Liang W, Yang C, Cheng H, Ding H, Yan L. Elevated follicular helper T cells and expression of IL-21 in thyroid tissues are involved in the pathogenesis of Graves' disease. Immunol Res. 2015;62:163–74.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu C, Ma J, Liu Y, Tong J, Tian J, Chen J, Tang X, Xu H, Lu L, Wang S. Increased frequency of follicular helper T cells in patients with autoimmune thyroid disease. J Clin Endocrinol Metab. 2012;97:943–50.

    Article  CAS  PubMed  Google Scholar 

  42. Qi Y, Zhou Y, Chen X, Ye L, Zhang Q, Huang F, Cui B, Lin D, Ning G, Wang W, Wang S. MicroRNA-4443 causes CD4+ T cells dysfunction by targeting TNFR-associated factor 4 in Graves' disease. Front Immunol. 2017;8:1440.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sun Y, Wang W, Tang Y, Wang D, Li L, Na M, Jiang G, Li Q, Chen S, Zhou J. Microarray profiling and functional analysis of differentially expressed plasma exosomal circular RNAs in Graves' disease. Biol Res. 2020;53:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu H, Li X, Liu D, Li J, Zhang X, Chen X, Hou S, Peng L, Xu C, Liu W, Zhang L, Qi H. Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature. 2013;496:523–7.

    Article  CAS  PubMed  Google Scholar 

  45. Gigoux M, Shang J, Pak Y, Xu M, Choe J, Mak TW, Suh WK. Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proc Natl Acad Sci U S A. 2009;106:20371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan J, Zhang X, Sun S, Yang T, Yang J, Wu G, Qiu Y, Yin Y, Xu W. miR-29b Reverses T helper 1 cells/T helper 2 cells imbalance and alleviates airway eosinophils recruitment in OVA-induced murine asthma by targeting inducible co-stimulator. Int Arch Allergy Immunol. 2019;180:182–94.

    Article  CAS  PubMed  Google Scholar 

  47. Pratama A, Srivastava M, Williams NJ, Papa I, Lee SK, Dinh XT, Hutloff A, Jordan MA, Zhao JL, Casellas R, Athanasopoulos V, Vinuesa CG. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun. 2015;6:6436.

    Article  CAS  PubMed  Google Scholar 

  48. Li J, Wan Y, Guo Q, Zou L, Zhang J, Fang Y, Zhang J, Zhang J, Fu X, Liu H, Lu L, Wu Y. Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther. 2010;12:R81.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang G, Tam LS, Li EK, Kwan BC, Chow KM, Luk CC, Li PK, Szeto CC. Serum and urinary cell-free MiR-146a and MiR-155 in patients with systemic lupus erythematosus. J Rheumatol. 2010;37:2516–22.

    Article  CAS  PubMed  Google Scholar 

  50. Cron MA, Payet CA, Fayet OM, Maillard S, Truffault F, Fadel E, Guihaire J, Berrih-Aknin S, Liston A, Le Panse R. Decreased expression of miR-29 family associated with autoimmune myasthenia gravis. J Neuroinflammation. 2020;17:294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Soh SB, Aw TC. Laboratory testing in thyroid conditions – pitfalls and clinical utility. Ann Lab Med. 2019;39:3–14.

    Article  PubMed  Google Scholar 

  52. Weetman AP. Autoimmune thyroid disease. Autoimmunity. 2004;37:337–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 81800698), Zhenjiang Sixth Phase 169 Project Training Fund Support Project (No. 28 of academic hard-core personnel research project), and Zhenjiang Science and Technology Planning Project (Grant Nos. SH2021026, SH2021059).

Author information

Authors and Affiliations

Authors

Contributions

Y.L., X.W., and W.L. designed the methodology, performed the experiments, and analyzed or synthesized study data. Y.L. wrote the original draft. J.Z. provided study materials, reagents, and materials and maintained research data. J.X. participated in the collection of specimens. S.W. and H.P. were responsible for the conceptualization, funding acquisition, project administration, and supervision for the research activity. All authors participated in the discussion and finalization of this manuscript.

Corresponding authors

Correspondence to Shengjun Wang or Huiyong Peng.

Ethics declarations

The study was reviewed and approved by the Ethics Committee of the Affiliated People’s Hospital of Jiangsu University and the ethics approval number is K-20200012-Y. The participants provided their written informed consent to participate in the study. All operations in this study adhered to standard biosecurity and institutional safety procedures.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. S1

The relative expression of intersected miRNAs in the PBMCs from 10 GD patients and 10 healthy controls was verified in the preliminary study. The transcript levels of miR-29a-3p (a), miR-29b-3p (b), and miR-98-5p (c) are shown. Each data point represents an individual subject, and the horizontal lines show the mean. ***p< 0.001, NS: no significance (PNG 82 kb)

High Resolution Image (TIFF 488 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, X., Luan, W. et al. MiR-29a-3p negatively regulates circulating Tfh memory cells in patients with Graves’ disease by targeting ICOS. Immunol Res 71, 173–184 (2023). https://doi.org/10.1007/s12026-022-09333-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-022-09333-5

Keywords

Navigation