Skip to main content
Log in

Exosome circRNAs and ceRNA network profiles in different ANA sera

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Increasing evidences show that circRNAs are associated with some autoimmunity diseases either as a biomarker or therapeutic target. Exosomes containing nucleic acids and proteins are found in sera of series diseases and could serve as either diagnostic or therapeutic target. ANA serves as first common diagnostic test for autoimmunity disease, different ANA staining reflecting different types of autoimmunity disease. Till now, whether different ANA sera exosomes express different circRNAs and relevant ceRNA networks are still shortage of investigation. This study analyzed circRNAs, miRNAs, and their interaction networks in different ANA sera exosomes by high-throughput sequencing. It found no significant difference of total circRNAs and miRNAs amount across different ANA sera exosomes. However, significant differences were found of circRNAs, miRNA constituents, function analysis by KEGG and GO, and their ceRNA networks including miRNA-circRNA and miRNA-mRNA among different ANA sera exosomes, suggesting sera exosome circRNAs as either biomarker or mechanism of autoimmunity diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zurawska A, Mycko MP, Selmaj KW. Circular RNAs as a novel layer of regulatory mechanism in multiple sclerosis. J Neuroimmunol [Internet]. 2019/06/05. 2019;334:576971. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31163273

  2. Sigdel KR, Cheng A, Wang Y, Duan L, Zhang Y. The emerging functions of long noncoding RNA in immune cells: autoimmune diseases. J Immunol Res [Internet]. 2015/06/20. 2015;2015:848790. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26090502

  3. Xia X, Tang X, Wang S. Roles of CircRNAs in autoimmune diseases. Front Immunol [Internet]. 2019/04/20. 2019;10:639. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31001261

  4. Blin J, Fitzgerald KA. Perspective: The RNA exosome, cytokine gene regulation and links to autoimmunity. Cytokine [Internet]. 2015/04/04. 2015;74:175–80. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25835609

  5. Duan W, Zhang W, Jia J, Lu Q, Eric Gershwin M. Exosomal microRNA in autoimmunity. Cell Mol Immunol [Internet]. 2019/10/31. 2019;16:932–4. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31664221

  6. Satoh M, Vazquez-Del Mercado M, Chan EK. Clinical interpretation of antinuclear antibody tests in systemic rheumatic diseases. Mod Rheumatol [Internet]. 2009/03/12. 2009;19:219–28. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19277826

  7. Ho KT, Reveille JD. The clinical relevance of autoantibodies in scleroderma. Arthritis Res Ther [Internet]. 2003/04/30. 2003;5:80–93. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12718748

  8. Peene I, Meheus L, Veys EM, De Keyser F. Detection and identification of antinuclear antibodies (ANA) in a large and consecutive cohort of serum samples referred for ANA testing. Ann Rheum Dis [Internet]. 2001/11/16. 2001;60:1131–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11709455

  9. Hu J, Meng W, Zhang D, Qiu C, Hua L, Xie Q, et al. Th17-relevant cytokines vary with sera of different ANA staining patterns. Int Immunopharmacol [Internet]. 2013/03/20. 2013;15:679–84. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23507192

  10. Conticini E, Sota J, Falsetti P, Bellisai F, Bacarelli MR, Al-Khayyat SG, et al. Anti-dense fine speckled 70 antibodies in primary Sjogren’s syndrome. Clin Exp Rheumatol [Internet]. 2020/06/24. 2020;38 Suppl 1:326. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32573418

  11. Haenisch S, Von Rüden EL, Wahmkow H, Rettenbeck ML, Michler C, Russmann V, et al. miRNA-187–3p-mediated regulation of the KCNK10/TREK-2 potassium channel in a rat epilepsy model. ACS Chem Neurosci [Internet]. ACS Chem Neurosci; 2016 [cited 2022 Mar 9];7:1585–94. Available from: https://pubmed.ncbi.nlm.nih.gov/27609046/

  12. Furue M, Mitoma C, Mitoma H, Tsuji G, Chiba T, Nakahara T, et al. Pathogenesis of systemic sclerosis-current concept and emerging treatments. Immunol Res [Internet]. 2017/05/11. 2017;65:790–7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28488090

  13. Timlin H, Wu M, Crespo-Bosque M, Geetha D, Ingolia A, Haque U, et al. Clinical characteristics of hydralazine-induced lupus. Cureus [Internet]. 2019/09/10. 2019;11:e4996. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31497427

  14. Brooks SP, Coccia M, Tang HR, Kanuga N, Machesky LM, Bailly M, et al. The Nance-Horan syndrome protein encodes a functional WAVE homology domain (WHD) and is important for co-ordinating actin remodelling and maintaining cell morphology. Hum Mol Genet [Internet]. Hum Mol Genet; 2010 [cited 2022 Mar 12];19:2421–32. Available from: https://pubmed.ncbi.nlm.nih.gov/20332100/

  15. Borja N, Bivona S, Peart LS, Johnson B, Gonzalez J, Barbouth D, et al. Genome sequencing reveals novel noncoding variants in PLA2G6 and LMNB1 causing progressive neurologic disease. Mol Genet genomic Med [Internet]. Mol Genet Genomic Med; 2022 [cited 2022 Mar 12]; Available from: https://pubmed.ncbi.nlm.nih.gov/35247231/

  16. Amadio R, Piperno GM, Benvenuti F. Self-DNA sensing by cGAS-STING and TLR9 in autoimmunity: is the cytoskeleton in control? Front Immunol [Internet]. Frontiers Media S.A.; 2021 [cited 2022 Mar 12];12. Available from: https://pubmed.ncbi.nlm.nih.gov/34084165/

  17. Oh-hora M. Calcium signaling in the development and function of T-lineage cells. Immunol Rev [Internet]. 2009/09/17. 2009;231:210–24. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19754899

  18. Zhang F, Wu L, Qian J, Qu B, Xia S, La T, et al. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J Autoimmun [Internet]. 2016/08/03. 2016;75:96–104. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27481557

  19. Murakami Y, Tanahashi T, Okada R, Toyoda H, Kumada T, Enomoto M, et al. Comparison of hepatocellular carcinoma miRNA expression profiling as evaluated by next generation sequencing and microarray. PLoS One [Internet]. 2014/09/13. 2014;9:e106314. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25215888

  20. Xiao S, Yang M, Yang H, Chang R, Fang F, Yang L. miR-330–5p targets SPRY2 to promote hepatocellular carcinoma progression via MAPK/ERK signaling. Oncogenesis [Internet]. 2018/11/23. 2018;7:90. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30464168

  21. Trehoux S, Lahdaoui F, Delpu Y, Renaud F, Leteurtre E, Torrisani J, et al. Micro-RNAs miR-29a and miR-330–5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells. Biochim Biophys Acta [Internet]. 2015/06/04. 2015;1853:2392–403. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26036346

  22. Pathak E, Bhavya, Mishra D, Atri N, Mishra R. Deciphering the role of microRNAs in BRD4-NUT fusion gene induced NUT midline carcinoma. Bioinformation [Internet]. 2017/07/22. 2017;13:209–13. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28729764

  23. Fabbri E, Montagner G, Bianchi N, Finotti A, Borgatti M, Lampronti I, et al. MicroRNA miR-93–5p regulates expression of IL-8 and VEGF in neuroblastoma SK-N-AS cells. Oncol Rep [Internet]. 2016/03/18. 2016;35:2866–72. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26986724

  24. Maffioletti E, Cattaneo A, Rosso G, Maina G, Maj C, Gennarelli M, et al. Peripheral whole blood microRNA alterations in major depression and bipolar disorder. J Affect Disord [Internet]. J Affect Disord; 2016 [cited 2022 Mar 12];200:250–8. Available from: https://pubmed.ncbi.nlm.nih.gov/27152760/

  25. Pan C, Sun G, Sha M, Wang P, Gu Y, Ni Q. Investigation of miR-93–5p and its effect on the radiosensitivity of breast cancer. Cell Cycle [Internet]. Cell Cycle; 2021 [cited 2022 Mar 12];20:1173–80. Available from: https://pubmed.ncbi.nlm.nih.gov/34024254/

  26. Su LC, Xu WD, Liu XY, Fu L, Huang AF. Altered expression of circular RNA in primary Sjogren’s syndrome. Clin Rheumatol [Internet]. 2019/08/20. 2019;38:3425–33. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31420809

  27. Li H, Li K, Lai W, Li X, Wang H, Yang J, et al. Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta [Internet]. 2018/01/24. 2018;480:17–25. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29360436

  28. Wang J, Yan S, Yang J, Lu H, Xu D, Wang Z. Non-coding RNAs in rheumatoid arthritis: from bench to bedside. Front Immunol [Internet]. 2020/02/13. 2019;10:3129. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32047497

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jinhui Hu: Conceptualization; methodology; writing, review and editing; project administration. Qiuhua Xie: Data curation; writing, original draft preparation; formal analysis. JingYi Wang: Sample collection, resources. Fengxia Xu: Investigation, visualization. Peng Liu: Investigation, validation. Zhicheng Wang: Conceptualization, supervision, project administration.

Corresponding authors

Correspondence to Jinhui Hu or Zhicheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jinhui Hu and Qiuhua Xie contribute equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Xie, Q., Wang, J. et al. Exosome circRNAs and ceRNA network profiles in different ANA sera. Immunol Res 70, 518–529 (2022). https://doi.org/10.1007/s12026-022-09282-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-022-09282-z

Keywords

Navigation