Skip to main content

Advertisement

Log in

H19 is involved in the regulation of inflammatory responses in acute gouty arthritis by targeting miR-22-3p

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

A Correction to this article was published on 14 November 2022

This article has been updated

Abstract

A great number of studies have confirmed that long noncoding RNA (lncRNA) are involved in the regulation of inflammatory response in acute gouty arthritis (AGA). This paper aimed to survey the regulatory mechanism of H19 on AGA. The expression of serum H19 in all subjects was examined by qRT-PCR. The ROC curve was used to estimate the diagnostic value of H19 for AGA. THP-1 cells were induced by MSU to establish in vitro AGA cell model. The concentrations of cytokines such as IL-1β, IL-8, and TNF-α were tested by ELISA. Luciferase reporter gene analysis was used to verify the interaction between H19 and the 3′-UTR of miR-22-3p. Expressions of serum H19 in AGA patients were significantly higher than that in controls. The ROC curve indicated the potential of H19 as a diagnostic marker for AGA. Cell experiments revealed that the downregulation of H19 significantly inhibited the expressions of IL-1β, IL-8, and TNF-α. The luciferase reporter gene assay manifested that miR-22-3p is the target gene of H19. And knockdown of miR-22-3p overturned the downregulation of inflammatory factors caused by H19 inhibition. H19 aggravated MSU-induced THP-1 inflammation by negatively targeting miR-22-3p, suggesting a new regulatory mechanism and potential therapeutic target for AGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Zhou XY, Yuan LJ, Chen Z, Tang PF, Li XY, Hu GX, et al. Determination of lesinurad in rat plasma by a UHPLC-MS/MS assay. Chem Cent J. 2017;11:121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zhou M, Ze K, Wang Y, Li X, Hua L, Lu Y, et al. Huzhang Tongfeng Granule improves monosodium urate-induced inflammation of gouty arthritis Rat model by downregulation of Cyr61 and related cytokines. Evid Based Complement Alternat Med. 2020;2020:9238797.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dhanasekar C, Kalaiselvan S, Rasool M. Morin, A bioflavonoid suppresses monosodium urate crystal-induced inflammatory immune response in RAW 264.7 macrophages through the inhibition of inflammatory mediators, intracellular ROS levels and NF-kappaB activation. PLoS One. 2015;10:e0145093.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mendez-Salazar EO, Vazquez-Mellado J, Casimiro-Soriguer CS, Dopazo J, Cubuk C, Zamudio-Cuevas Y, et al. Taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism. Mol Med. 2021;27:50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. D’Amario D, Cappetta D, Cappannoli L, Princi G, Migliaro S, Diana G, et al. Colchicine in ischemic heart disease: the good, the bad and the ugly. Clin Res Cardiol. 2021;110:1531–42.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Qing YF, Zheng JX, Tang YP, Dai F, Dong ZR, Zhang QB. LncRNAs Landscape in the patients of primary gout by microarray analysis. PLoS One. 2021;16:e0232918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Consortium E P. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  Google Scholar 

  8. Murphy MB, Medvedev AE. Long noncoding RNAs as regulators of Toll-like receptor signaling and innate immunity. J Leukoc Biol. 2016;99:839–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lustig O, Ariel I, Ilan J, Lev-Lehman E, De-Groot N, Hochberg A. Expression of the imprinted gene H19 in the human fetus. Mol Reprod Dev. 1994;38:239–46.

    Article  PubMed  CAS  Google Scholar 

  10. Wang J, Zhao H, Fan Z, Li G, Ma Q, Tao Z, et al. Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1-dependent M1 microglial polarization. Stroke. 2017;48:2211–21.

    Article  PubMed  CAS  Google Scholar 

  11. Li H, Tang C, Wang D. LncRNA H19 promotes inflammatory response induced by cerebral ischemia-reperfusion injury through regulating the miR-138-5p-p65 axis. Biochem Cell Biol. 2020;98:525–36.

    Article  PubMed  CAS  Google Scholar 

  12. Hu Y, Li S, Zou Y. Knockdown of LncRNA H19 relieves LPS-induced damage by modulating miR-130a in osteoarthritis. Yonsei Med J. 2019;60:381–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yang J, Li Y, Wang L, Zhang Z, Li Z, Jia Q. LncRNA H19 aggravates TNF-alpha-induced inflammatory injury via TAK1 pathway in MH7A cells. BioFactors. 2020;46:813–20.

    Article  PubMed  CAS  Google Scholar 

  14. Wallace SL, Robinson H, Masi AT, Decker JL, McCarty DJ, Yu TF. Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum. 1977;20:895–900.

    Article  PubMed  CAS  Google Scholar 

  15. Li G, Zhang H, Ma H, Qu S, Xing Q, Wang G. MiR-221-5p is involved in the regulation of inflammatory responses in acute gouty arthritis by targeting IL-1beta. Int J Rheum Dis. 2021;24:335–40.

    Article  PubMed  CAS  Google Scholar 

  16. An S, Li J, Xie W, Yin N, Li Y, Hu Y. Extracorporeal shockwave treatment in knee osteoarthritis: therapeutic effects and possible mechanism. Biosci Rep. 2020;40:BSR20200926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Toubai T, Mathewson ND, Magenau J, Reddy P. Danger signals and graft-versus-host disease: current understanding and future perspectives. Front Immunol. 2016;7:539.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yao R, Geng Z, Mao X, Bao Y, Guo S, Bao L, et al. Tu-Teng-Cao extract alleviates monosodium urate-induced acute gouty arthritis in rats by inhibiting uric acid and inflammation. Evid Based Complement Alternat Med. 2020;2020:3095624.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee YM, Shon EJ, Kim OS, Kim DS. Effects of Mollugo pentaphylla extract on monosodium urate crystal-induced gouty arthritis in mice. BMC Complement Altern Med. 2017;17:447.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Han J, Xie Y, Sui F, Liu C, Du X, Liu C, et al. Zisheng Shenqi decoction ameliorates monosodium urate crystal-induced gouty arthritis in rats through anti-inflammatory and anti-oxidative effects. Mol Med Rep. 2016;14:2589–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yang B, Xu L, Wang S. Regulation of lncRNA-H19/miR-140-5p in cartilage matrix degradation and calcification in osteoarthritis. Ann Palliat Med. 2020;9:1896–904.

    Article  PubMed  Google Scholar 

  22. Stuhlmuller B, Kunisch E, Franz J, Martinez-Gamboa L, Hernandez MM, Pruss A, et al. Detection of oncofetal h19 RNA in rheumatoid arthritis synovial tissue. Am J Pathol. 2003;163:901–11.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Narvaez J, Sirvent E, Narvaez JA, Bas J, Gomez-Vaquero C, Reina D, et al. Usefulness of magnetic resonance imaging of the hand versus anticyclic citrullinated peptide antibody testing to confirm the diagnosis of clinically suspected early rheumatoid arthritis in the absence of rheumatoid factor and radiographic erosions. Semin Arthritis Rheum. 2008;38:101–9.

    Article  PubMed  Google Scholar 

  24. Wang C, Yu J, Han Y, Li L, Li J, Li T, et al. Long non-coding RNAs LOC285194, RP11–462C24.1 and Nbla12061 in serum provide a new approach for distinguishing patients with colorectal cancer from healthy controls. Oncotarget. 2016;7:70769–78.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Sun L, Xuan L, Pan Z, Li K, Liu S, et al. Reciprocal changes of circulating long Non-coding RNAs ZFAS1 and CDR1AS predict acute myocardial infarction. Sci Rep. 2016;6:22384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wan X, Tian X, Du J, Lu Y, Xiao Y. Long non-coding RNA H19 deficiency ameliorates bleomycin-induced pulmonary inflammation and fibrosis. Respir Res. 2020;21:290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Xu J, Xiang P, Liu L, Sun J, Ye S. Metformin inhibits extracellular matrix accumulation, inflammation and proliferation of mesangial cells in diabetic nephropathy by regulating H19/miR-143-3p/TGF-beta1 axis. J Pharm Pharmacol. 2020;72:1101–9.

    Article  PubMed  CAS  Google Scholar 

  28. Wu F, Sui Y, Wang Y, Xu T, Fan L, Zhu H. Long Noncoding RNA SNHG7, a molecular sponge for microRNA-485, promotes the aggressive behavior of cervical cancer by regulating PAK4. Onco Targets Ther. 2020;13:685–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bi X, Guo XH, Mo BY, Wang ML, Luo XQ, Chen YX, et al. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis. EBioMedicine. 2019;50:408–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Xiong J. Emerging roles of microRNA-22 in human disease and normal physiology. Curr Mol Med. 2012;12:247–58.

    Article  PubMed  CAS  Google Scholar 

  31. Wang X, Chi J, Dong B, Xu L, Zhou Y, Huang Y, et al. MiR-223-3p and miR-22-3p inhibit monosodium urate-induced gouty inflammation by targeting NLRP3. Int J Rheum Dis. 2021;24:599–607.

    Article  PubMed  CAS  Google Scholar 

  32. Luo Y, Guo J, Xu P, Gui R. Long Non-coding RNA GAS5 maintains insulin secretion by regulating multiple miRNAs in INS-1 832/13 cells. Front Mol Biosci. 2020;7:559267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The gene name contains an error in the title: miR-2-3p should be miR-22-3p.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, YY., Liu, HJ., Sun, ZJ. et al. H19 is involved in the regulation of inflammatory responses in acute gouty arthritis by targeting miR-22-3p. Immunol Res 70, 392–399 (2022). https://doi.org/10.1007/s12026-022-09276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-022-09276-x

Keywords

Navigation