Skip to main content
Log in

CircCBFB is a mediator of hepatocellular carcinoma cell autophagy and proliferation through miR-424-5p/ATG14 axis

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

This study aims to investigate the role of circCBFB in hepatocellular carcinoma (HCC) cell proliferation and autophagy. qRT-PCR and Western blotting analyses quantified the expression levels of circCBFB, miR-424-5p, and ATG14 in HCC tissues and/or HCC cell lines. After transfection with pcDNA3.1-CircCBFB, sh-CircCBFB, miR-424-5p mimic, miR-424-5p inhibitor, pcDNA3.1-ATG14, sh-ATG14, sh-CircCBFB + miR-424-5p inhibitor, pcDNA3.1-CircCBFB + miR-424-5p mimic, sh-CircCBFB + pcDNA3.1-ATG14, or pcDNA3.1-CircCBFB + sh-ATG14, the proliferation, cell cycle, and apoptosis of Huh-7 and HCCLM3 cells were detected, respectively, through MTT assay and flow cytometry. Western blotting measured the expression levels of ATG14 and autophagy-related proteins (LC3-ΙΙ/LC3-Ι, Beclin1, and p62). The interactions among circCBFB, miR-424-5p, and ATG14 were identified through RNA fluorescence in situ hybridization and RNA immunoprecipitation. In HCC tissues, circCBFB and ATG14 were highly expressed, and miR-424-5p expression was downregulated. Transfection of pcDNA3.1-CircCBFB, miR-424-5p inhibitor, or pcDNA3.1-ATG14 into HCC cells facilitated HCC cell proliferation and autophagy, while suppressing cell apoptosis, evidenced by elevated cell viability, increased protein levels of autophagosome markers (LC3-ΙΙ/LC3-Ι and Beclin1), repressed apoptosis rate, and suppressed protein level of autophagy receptor p62. miR-424-5p was a target gene of circCBFB, and miR-424-5p negatively mediated ATG14. CircCBFB inhibits miR-424-5p and upregulates ATG14, thus promoting HCC cell proliferation and autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang W, Sui J, Ma Y, Simon TG, Chong D, Meyerhardt JA, et al. A prospective study of dairy product intake and the risk of hepatocellular carcinoma in U. S. men and women. Int J Cancer. 2020;146(5):1241–9. https://doi.org/10.1002/ijc.32423.

    Article  CAS  PubMed  Google Scholar 

  2. Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res. 2018;24(6):1248–59. https://doi.org/10.1158/1078-0432.CCR-17-0853.

    Article  CAS  PubMed  Google Scholar 

  3. Reynaert H, Colle I. Treatment of advanced hepatocellular carcinoma with somatostatin analogues: a review of the literature. Int J Mol Sci. 2019;20(19). doi:https://doi.org/10.3390/ijms20194811.

  4. Ding H, Liu J, Zou R, Cheng P, Su Y. Long non-coding RNA TPTEP1 inhibits hepatocellular carcinoma progression by suppressing STAT3 phosphorylation. J Exp Clin Cancer Res. 2019;38(1):189. https://doi.org/10.1186/s13046-019-1193-0.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhou J, Zhang X, Tang H, Yu J, Zu X, Xie Z, et al. Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) in autophagy-induced hepatocellular carcinoma. Clin Chim Acta. 2020;506:1–8. https://doi.org/10.1016/j.cca.2020.02.028.

    Article  CAS  PubMed  Google Scholar 

  6. Kiruthiga C, Devi KP, Nabavi SM, Bishayee A. Autophagy: a potential therapeutic target of polyphenols in hepatocellular carcinoma. Cancers (Basel). 2020;12(3). doi:https://doi.org/10.3390/cancers12030562.

  7. Niture S, Gyamfi MA, Lin M, Chimeh U, Dong X, Zheng W, et al. TNFAIP8 regulates autophagy, cell steatosis, and promotes hepatocellular carcinoma cell proliferation. Cell Death Dis. 2020;11(3):178. https://doi.org/10.1038/s41419-020-2369-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang CZ, Yan GX, Dong DS, Xin H, Liu ZY. LncRNA-ATB promotes autophagy by activating yes-associated protein and inducing autophagy-related protein 5 expression in hepatocellular carcinoma. World J Gastroenterol. 2019;25(35):5310–22. https://doi.org/10.3748/wjg.v25.i35.5310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu WP, Liu JP, Feng JF, Zhu CP, Yang Y, Zhou WP, et al. miR-541 potentiates the response of human hepatocellular carcinoma to sorafenib treatment by inhibiting autophagy. Gut. 2019. https://doi.org/10.1136/gutjnl-2019-318830.

    Article  PubMed  Google Scholar 

  10. Huang KT, Kuo IY, Tsai MC, Wu CH, Hsu LW, Chen LY, et al. Factor VII-induced microRNA-135a inhibits autophagy and is associated with poor prognosis in hepatocellular carcinoma. Mol Ther Nucleic Acids. 2017;9:274–83. https://doi.org/10.1016/j.omtn.2017.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qiu L, Huang Y, Li Z, Dong X, Chen G, Xu H, et al. Circular RNA profiling identifies circADAMTS13 as a miR-484 sponge which suppresses cell proliferation in hepatocellular carcinoma. Mol Oncol. 2019;13(2):441–55. https://doi.org/10.1002/1878-0261.12424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang S, Cui S, Zhao W, Qian Z, Liu H, Chen Y, et al. Screening and bioinformatics analysis of circular RNA expression profiles in hepatitis B-related hepatocellular carcinoma. Cancer Biomark. 2018;22(4):631–40. https://doi.org/10.3233/CBM-170910.

    Article  CAS  PubMed  Google Scholar 

  13. Qu S, Liu Z, Yang X, Zhou J, Yu H, Zhang R, et al. The emerging functions and roles of circular RNAs in cancer. Cancer Lett. 2018;414:301–9. https://doi.org/10.1016/j.canlet.2017.11.022.

    Article  CAS  PubMed  Google Scholar 

  14. Guan Z, Tan J, Gao W, Li X, Yang Y, Li X, et al. Circular RNA hsa_circ_0016788 regulates hepatocellular carcinoma tumorigenesis through miR-486/CDK4 pathway. J Cell Physiol. 2018;234(1):500–8. https://doi.org/10.1002/jcp.26612.

    Article  CAS  PubMed  Google Scholar 

  15. Huang XY, Huang ZL, Xu YH, Zheng Q, Chen Z, Song W, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma. Sci Rep. 2017;7(1):5428. https://doi.org/10.1038/s41598-017-05432-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xia L, Wu L, Bao J, Li Q, Chen X, Xia H, et al. Circular RNA circ-CBFB promotes proliferation and inhibits apoptosis in chronic lymphocytic leukemia through regulating miR-607/FZD3/Wnt/beta-catenin pathway. Biochem Biophys Res Commun. 2018;503(1):385–90. https://doi.org/10.1016/j.bbrc.2018.06.045.

    Article  CAS  PubMed  Google Scholar 

  17. Yue J, Zhu T, Yang J, Si Y, Xu X, Fang Y, et al. CircCBFB-mediated miR-28-5p facilitates abdominal aortic aneurysm via LYPD3 and GRIA4. Life Sci. 2020;253: 117533. https://doi.org/10.1016/j.lfs.2020.117533.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Z, Zhao Y, Sun R, Sun Y, Liu D, Lin M, et al. circ-CBFB upregulates p66Shc to perturb mitochondrial dynamics in APAP-induced liver injury. Cell Death Dis. 2020;11(11):953. https://doi.org/10.1038/s41419-020-03160-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding Z, Guo L, Deng Z, Li P. Circ-PRMT5 enhances the proliferation, migration and glycolysis of hepatoma cells by targeting miR-188-5p/HK2 axis. Ann Hepatol. 2020;19(3):269–79. https://doi.org/10.1016/j.aohep.2020.01.002.

    Article  CAS  PubMed  Google Scholar 

  20. Pu J, Wang J, Li W, Lu Y, Wu X, Long X, et al. hsa_circ_0000092 promotes hepatocellular carcinoma progression through up-regulating HN1 expression by binding to microRNA-338-3p. J Cell Mol Med. 2020. https://doi.org/10.1111/jcmm.15010.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wei X, Zheng W, Tian P, He Y, Liu H, Peng M, et al. Oncogenic hsa_circ_0091581 promotes the malignancy of HCC cell through blocking miR-526b from degrading c-MYC mRNA. Cell Cycle. 2020;19(7):817–24. https://doi.org/10.1080/15384101.2020.1731945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen DP, Ning WR, Li XF, Wei Y, Lao XM, Wang JC, et al. Peritumoral monocytes induce cancer cell autophagy to facilitate the progression of human hepatocellular carcinoma. Autophagy. 2018;14(8):1335–46. https://doi.org/10.1080/15548627.2018.1474994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiong H, Ni Z, He J, Jiang S, Li X, He J, et al. LncRNA HULC triggers autophagy via stabilizing Sirt1 and attenuates the chemosensitivity of HCC cells. Oncogene. 2017;36(25):3528–40. https://doi.org/10.1038/onc.2016.521.

    Article  CAS  PubMed  Google Scholar 

  24. Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18(4):571–80. https://doi.org/10.1038/cdd.2010.191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shan Y, Li P. Long intergenic non-protein coding RNA 665 regulates viability, apoptosis, and autophagy via the MiR-186-5p/MAP4K3 axis in hepatocellular carcinoma. Yonsei Med J. 2019;60(9):842–53. https://doi.org/10.3349/ymj.2019.60.9.842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qiu DM, Wang GL, Chen L, Xu YY, He S, Cao XL, et al. The expression of beclin-1, an autophagic gene, in hepatocellular carcinoma associated with clinical pathological and prognostic significance. BMC Cancer. 2014;14:327. https://doi.org/10.1186/1471-2407-14-327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM et al. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy. 2011;7(11):1273–94. doi:https://doi.org/10.4161/auto.7.11.17661.

  28. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8. https://doi.org/10.1038/nature11993.

    Article  CAS  PubMed  Google Scholar 

  29. Du H, Xu Q, Xiao S, Wu Z, Gong J, Liu C, et al. MicroRNA-424-5p acts as a potential biomarker and inhibits proliferation and invasion in hepatocellular carcinoma by targeting TRIM29. Life Sci. 2019;224:1–11. https://doi.org/10.1016/j.lfs.2019.03.028.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Li T, Guo P, Kang J, Wei Q, Jia X, et al. MiR-424-5p reversed epithelial-mesenchymal transition of anchorage-independent HCC cells by directly targeting ICAT and suppressed HCC progression. Sci Rep. 2014;4:6248. https://doi.org/10.1038/srep06248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li B, Wu X, Chen H, Zhuang C, Zhang Z, Yao S, et al. miR199a-5p inhibits hepatic insulin sensitivity via suppression of ATG14-mediated autophagy. Cell Death Dis. 2018;9(3):405. https://doi.org/10.1038/s41419-018-0439-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu F, Dong B, Dong P, He Y, Zheng J, Xu P. Hypoxia induces the activation of hepatic stellate cells through the PVT1-miR-152-ATG14 signaling pathway. Mol Cell Biochem. 2020;465(1–2):115–23. https://doi.org/10.1007/s11010-019-03672-y.

    Article  CAS  PubMed  Google Scholar 

  33. Xiong X, Tao R, DePinho RA, Dong XC. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J Biol Chem. 2012;287(46):39107–14. https://doi.org/10.1074/jbc.M112.412569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matsunaga K, Morita E, Saitoh T, Akira S, Ktistakis NT, Izumi T, et al. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol. 2010;190(4):511–21. https://doi.org/10.1083/jcb.200911141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fogel AI, Dlouhy BJ, Wang C, Ryu SW, Neutzner A, Hasson SA, et al. Role of membrane association and Atg14-dependent phosphorylation in beclin-1-mediated autophagy. Mol Cell Biol. 2013;33(18):3675–88. https://doi.org/10.1128/MCB.00079-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu FQ, Fang T, Yu LX, Lv GS, Lv HW, Liang D, et al. ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1alpha. J Hepatol. 2016;65(2):314–24. https://doi.org/10.1016/j.jhep.2016.04.019.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., He, J. & Feng, C. CircCBFB is a mediator of hepatocellular carcinoma cell autophagy and proliferation through miR-424-5p/ATG14 axis. Immunol Res 70, 341–353 (2022). https://doi.org/10.1007/s12026-021-09255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-021-09255-8

Keywords

Navigation