Skip to main content
Log in

Microarray profiling and functional analysis reveal the regulatory role of differentially expressed plasma circular RNAs in Hashimoto’s thyroiditis

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) have been revealed as being abundantly expressed in a variety of tissues and have been found to contribute to the regulation of many autoimmune diseases. Although previous studies demonstrated that the pathogenesis of Hashimoto’s thyroiditis (HT) is related with epigenetic dysregulation, the exact mechanism remains unclear. The important role of thyroid-specific circRNAs in HT attracted much attention but without any report revealed their expression profile and function in plasma of HT. In this study, the circRNA expression profile in plasma of HT was explored for the first time by using Arraystar CircRNA Microarray technology. We obtained 22 differentially expressed circRNAs (fold change ≥ 2.0 or ≤  − 2.0, p < 0.05) in plasma of HT, including 7 upregulated circRNAs and 15 downregulated circRNAs. By constructing circRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network, we found that upregulated circRNAs may function as ceRNAs and affect the occurrence or development of HT through chemokine signaling pathway (p < 0.0001), HIF-1 signaling pathway (p = 0.02), and FoxO signaling pathway (p = 0.04). Notably, hsa_circ_0008193 verified by RT-qPCR were the major upregulation circRNAs involved in the chemokine signaling pathway. These results provide a comprehensive circRNA resource for further in-depth study of the regulatory mechanisms of circRNA in HT and may provide new insight into HT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ruggeri RM, Giuffrida G, Campennì A. Autoimmune endocrine diseases. Minerva Endocrinol. 2018;43(3):305–22. https://doi.org/10.23736/S0391-1977.17.02757-2.

    Article  PubMed  Google Scholar 

  2. Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571:489–99. https://doi.org/10.1038/s41586-019-1411-0.

    Article  CAS  PubMed  Google Scholar 

  3. Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15(7):409. https://doi.org/10.1186/s13059-014-0409-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yin L, Zeng C, Yao J, et al. Emerging roles for noncoding RNAs in autoimmune thyroid disease. Endocrinology. 2020;161(8):bqaa053. https://doi.org/10.1210/endocr/bqaa053.

    Article  PubMed  Google Scholar 

  5. Zheng F, Yu X, Huang J, et al. Circular RNA expression profiles of peripheral blood mononuclear cells in rheumatoid arthritis patients, based on microarray chip technology. Mol Med Rep. 2017;16:8029–36. https://doi.org/10.3892/mmr.2017.7638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li LJ, Zhu ZW, Zhao W, et al. Circular RNA expression profile and potential function of hsa_circ_0045272 in systemic lupus erythematosus. Immunology. 2018;155:137–49. https://doi.org/10.1111/imm.12940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luan J, Jiao C, Kong W, et al. circHLA-C plays an important role in lupus nephritis by sponging miR-150. Mol Ther Nucleic Acids. 2018;10:245–53. https://doi.org/10.1016/j.omtn.2017.12.006.

    Article  CAS  PubMed  Google Scholar 

  8. Iparraguirre L, Alberro A, Sepúlveda L, et al. RNA-Seq profiling of leukocytes reveals a sex-dependent global circular RNA upregulation in multiple sclerosis and 6 candidate biomarkers. Hum Mol Genet. 2020;29:3361–72. https://doi.org/10.1093/hmg/ddaa219.

    Article  CAS  PubMed  Google Scholar 

  9. Chen X, Yang T, Wang W, et al. Circular RNAs in immune responses and immune diseases. Theranostics. 2019;9:588–607. https://doi.org/10.7150/thno.29678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiong S, Peng H, Ding X, et al. Circular RNA expression profiling and the potential role of hsa_circ_0089172 in Hashimoto’s thyroiditis via sponging miR125a-3p. Mol Ther Nucleic Acids. 2019;17:38–48. https://doi.org/10.1016/j.omtn.2019.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Winde CM, Matthews AL, van Deventer S, et al. C-type lectin-like receptor 2 (CLEC-2)-dependent dendritic cell migration is controlled by tetraspanin CD37. J Cell Sci. 2018;131(19):jcs214551. https://doi.org/10.1242/jcs.214551.

    Article  CAS  PubMed  Google Scholar 

  12. Ferrari SM, Fallahi P, Elia G, et al. Novel therapies for thyroid autoimmune diseases: an update. Best Pract Res Clin Endocrinol Metab. 2020;34(1):101366. https://doi.org/10.1016/j.beem.2019.101366.

    Article  CAS  PubMed  Google Scholar 

  13. Fallahi P, Ferrari SM, Ragusa F, et al. Th1 chemokines in autoimmune endocrine disorders. J Clin Endocrinol Metab. 2020;105(4):dgz289. https://doi.org/10.1210/clinem/dgz289.

    Article  PubMed  Google Scholar 

  14. Faustino LC, Lombardi A, Madrigal-Matute J, et al. Interferon-α triggers autoimmune thyroid diseases via lysosomal-dependent degradation of thyroglobulin. J Clin Endocrinol Metab. 2018;103(10):3678–87. https://doi.org/10.1210/jc.2018-00541.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization. Cell. 2014;159(1):134–47. https://doi.org/10.1016/j.cell.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  16. Ock S, Ahn J, Lee SH, et al. IGF-1 receptor deficiency in thyrocytes impairs thyroid hormone secretion and completely inhibits TSH-stimulated goiter. FASEB J. 2013;27(12):4899–908. https://doi.org/10.1096/fj.13-231381.

    Article  CAS  PubMed  Google Scholar 

  17. Teumer A, Rawal R, Homuth G, et al. Genome-wide association study identifies four genetic loci associated with thyroid volume and goiter risk. Am J Hum Genet. 2011;88(5):664–73. https://doi.org/10.1016/j.ajhg.2011.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hutter K, Rülicke T, Drach M, Andersen L, Villunger A, Herzog S. Differential roles of miR-15a/16–1 and miR-497/195 clusters in immune cell development and homeostasis. FEBS J. 2021;288(5):1533–45. https://doi.org/10.1111/febs.15493.

    Article  CAS  PubMed  Google Scholar 

  19. Varma-Doyle AV, Lukiw WJ, Zhao Y, Lovera J, Devier D. A hypothesis-generating scoping review of miRs identified in both multiple sclerosis and dementia, their protein targets, and miR signaling pathways. J Neurol Sci. 2021;420:117202. https://doi.org/10.1016/j.jns.2020.117202.

    Article  CAS  PubMed  Google Scholar 

  20. Wang S, Xu J, Guo Y, et al. MicroRNA-497 reduction and increase of its family member microRNA-424 lead to dysregulation of multiple inflammation related genes in synovial fibroblasts with rheumatoid arthritis. Front Immunol. 2021;12:619392. https://doi.org/10.3389/fimmu.2021.619392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Honardoost MA, Kiani-Esfahani A, Ghaedi K, Etemadifar M, Salehi M. miR-326 and miR-26a, two potential markers for diagnosis of relapse and remission phases in patient with relapsing-remitting multiple sclerosis. Gene. 2014;544(2):128–33. https://doi.org/10.1016/j.gene.2014.04.069.

    Article  CAS  PubMed  Google Scholar 

  22. Friedrich M, Pracht K, Mashreghi MF, et al. The role of the miR-148/-152 family in physiology and disease. Eur J Immunol. 2017;47(12):2026–38. https://doi.org/10.1002/eji.201747132.

    Article  CAS  PubMed  Google Scholar 

  23. Pan LX, Li LY, Zhou H, et al. TMEM100 mediates inflammatory cytokines secretion in hepatic stellate cells and its mechanism research. Toxicol Lett. 2019;317:82–91. https://doi.org/10.1016/j.toxlet.2018.12.010.

    Article  CAS  PubMed  Google Scholar 

  24. Liao KC, Chuo V, Fagg WS, et al. The RNA binding protein Quaking represses host interferon response by downregulating MAVS. RNA Biol. 2020;17(3):366–80. https://doi.org/10.1080/15476286.2019.1703069.

    Article  CAS  PubMed  Google Scholar 

  25. Giusti N, Gillotay P, Trubiroha A, et al. Inhibition of the thyroid hormonogenic H 2 O 2 production by Duox/DuoxA in zebrafish reveals VAS2870 as a new goitrogenic compound. Mol Cell Endocrinol. 2020;500:110635. https://doi.org/10.1016/j.mce.2019.110635.

    Article  CAS  PubMed  Google Scholar 

  26. Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17(4):205–11. https://doi.org/10.1038/nrm.2015.32.

    Article  CAS  PubMed  Google Scholar 

  27. Wilusz JE. A 360° view of circular RNAs: from biogenesis to functions. Wiley Interdiscip Rev RNA. 2018;9(4):e1478. https://doi.org/10.1002/wrna.1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peng H, Liu Y, Tian J, et al. Decreased expression of microRNA-125a-3p upregulates interleukin-23 receptor in patients with Hashimoto’s thyroiditis. Immunol Res. 2015;62(2):129–36. https://doi.org/10.1007/s12026-015-8643-3.

    Article  CAS  PubMed  Google Scholar 

  29. Mazzone R, Zwergel C, Artico M, et al. The emerging role of epigenetics in human autoimmune disorders. Clin Epigenetics. 2019;11(1):34. https://doi.org/10.1186/s13148-019-0632-2.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Romay MC, Che N, Becker SN, et al. Regulation of NF-κB signaling by oxidized glycerophospholipid and IL-1β induced miRs-21–3p and -27a-5p in human aortic endothelial cells. J Lipid Res. 2015;56(1):38–50. https://doi.org/10.1194/jlr.M052670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ralli M, Angeletti D, Fiore M, et al. Hashimoto’s thyroiditis: an update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun Rev. 2020;19(10):102649. https://doi.org/10.1016/j.autrev.2020.102649.

    Article  CAS  PubMed  Google Scholar 

  32. Martínez-Hernández R, Serrano-Somavilla A, Ramos-Leví A, et al. Integrated miRNA and mRNA expression profiling identifies novel targets and pathological mechanisms in autoimmune thyroid diseases. EBioMedicine. 2019;50:329–42. https://doi.org/10.1016/j.ebiom.2019.10.061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu XF, Wang RQ, Hu B, et al. MiR-15a contributes abnormal immune response in myasthenia gravis by targeting CXCL10. Clin Immunol. 2016;164:106–13. https://doi.org/10.1016/j.clim.2015.12.009.

    Article  CAS  PubMed  Google Scholar 

  34. Jia X, Wei Y, Miao X, et al. Deficiency of miR-15a/16 upregulates NKG2D in CD8+ T cells to exacerbate dextran sulfate sodium-induced colitis. Biochem Biophys Res Commun. 2021;554:114–22. https://doi.org/10.1016/j.bbrc.2021.03.090.

    Article  CAS  PubMed  Google Scholar 

  35. Rotondi M, Lazzeri E, Romagnani P, Serio M. Role for interferon-gamma inducible chemokines in endocrine autoimmunity: an expanding field. J Endocrinol Invest. 2003;26(2):177–80. https://doi.org/10.1007/BF03345149.

    Article  CAS  PubMed  Google Scholar 

  36. Luo X, Zheng T, Mao C, et al. Aberrant MRP14 expression in thyroid follicular cells mediates chemokine secretion through the IL-1β/MAPK pathway in Hashimoto’s thyroiditis. Endocr Connect. 2018;7:850–8. https://doi.org/10.1530/EC-18-0019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mohan T, Deng L, Wang BZ. CCL28 chemokine: an anchoring point bridging innate and adaptive immunity. Int Immunopharmacol. 2017;51:165–70. https://doi.org/10.1016/j.intimp.2017.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Aksomics for circRNA microarray sequencing. This work was supported by Science and Technology project of Fujian Provincial Department (2019J01166), Innovative medical research project of Fujian Province (2018-CX-33), and High-level talent program of science and technology project of Quanzhou city (2018C044R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huibin Huang.

Ethics declarations

Ethics approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Huang, M., Chen, X. et al. Microarray profiling and functional analysis reveal the regulatory role of differentially expressed plasma circular RNAs in Hashimoto’s thyroiditis. Immunol Res 70, 331–340 (2022). https://doi.org/10.1007/s12026-021-09241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-021-09241-0

Keywords

Navigation