Skip to main content

Advertisement

Log in

The role of Th17 cells in psoriasis

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

T helper 17 (Th17) cells have been involved in the pathogenesis of many autoimmune and inflammatory diseases, like psoriasis, multiple sclerosis (MS), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). However, the role of Th17 cells in psoriasis has not been clarified completely. Th17-derived proinflammatory cytokines including IL-17A, IL-17F, IL-21, IL-22, and IL-26 have a critical role in the pathogenesis of these disorders. In this review, we introduced the signaling and transcriptional regulation of Th17 cells. And then, we demonstrate the immunopathology role of Th17 cells and functions of the related cytokines in the psoriasis to get a better understanding of the inflammatory mechanisms mediated by Th17 cells in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stadhouders R, Lubberts E, Hendriks RW. A cellular and molecular view of T helper 17 cell plasticity in autoimmunity. J Autoimmun. 2017;87:1–15. https://doi.org/10.1016/J.JAUT.2017.12.007.

    Article  PubMed  Google Scholar 

  2. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL, Coff-man RL. Two types of murine helper T cell clones. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 2005;175(1):5–14.

    CAS  PubMed  Google Scholar 

  3. Romagnani S. Human TH1 and TH2 subsets: doubt no more. Immunol Today. 1991;12(8):256–7.

    CAS  PubMed  Google Scholar 

  4. Zhang DH, Cohn L, Ray P, Bottomly K, Ray A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem. 1997;272(34):21597–603.

    CAS  PubMed  Google Scholar 

  5. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100(6):655–69.

    CAS  PubMed  Google Scholar 

  6. Mullen AC, High FA, Hutchins AS, Lee HW, Villarino AV, Livingston DM, et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science. 2001;292(5523):1907–10.

    CAS  PubMed  Google Scholar 

  7. Zheng W, ., Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 1997;89(4):587–596.

    CAS  PubMed  Google Scholar 

  8. Langrish CL, Chen YY, Blumenschein WM, Mattson JD, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–40. https://doi.org/10.1084/JEM.20041257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–32.

    CAS  PubMed  Google Scholar 

  10. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133–41. https://doi.org/10.1038/NI1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007;204(8):1849–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang XP, O’Shea JJ, Ghoreschi K, Laurence A. Signal transduction and TH17 cell differentiation. Microbes Infect. 2009;11(5):599–611.

    Google Scholar 

  13. Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S. Defining the human T helper 17 cell phenotype. Trends Immunol. 2012;33(10):505–12.

    CAS  PubMed  Google Scholar 

  14. Singh RP, Hasan S, Sharma S, Nagra S, Yamaguchi DT, Wong DTW, et al. Th17 cells in inflammation and autoimmunity. Autoimmun Rev. 2014;13(12):1174–81. https://doi.org/10.1016/J.AUTREV.2014.08.019.

    Article  CAS  PubMed  Google Scholar 

  15. Estelle B, Yijun C, Wenda G, Thomas K, Strom TB, Mohamed O, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8.

    Google Scholar 

  16. Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441(7090):231–4.

    CAS  PubMed  Google Scholar 

  17. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–89.

    CAS  PubMed  Google Scholar 

  18. Zhou L, Ivanov IR, Min R, Shenderov K, Egawa T, Levy D, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;39(1):967–74.

    Google Scholar 

  19. Yang XO, Panopoulos AD, Roza N, Seon Hee C, Demin W, Watowich SS, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007;282(13):9358–63.

    CAS  PubMed  Google Scholar 

  20. Zhang S, Takaku M, Zou L, Gu AD, Chou WC, Zhang G, et al. Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature. 2017;551(7678):105–9. https://doi.org/10.1038/NATURE24283.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wei L, Laurence A, Elias KM, O'Shea JJ. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem. 2007;282(48):34605–10.

    CAS  PubMed  Google Scholar 

  22. Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, et al. 112 essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Cytokine.

  23. Nurieva RI, Chung Y, Hwang D, Yang XO, Hong SK, Li M, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity. 2008;29(1):138–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB, et al. IL-21 initiates an alternative pathway to induce proinflammatory T H 17 cells. Nature. 2007;448(7152):484–7. https://doi.org/10.1038/NATURE05970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Akira S, Daisuke K, Shin-ichiro K, Koichi H, Norihiko W, Kotaro Y, et al. Development and characterization of IL-21-producing CD4+ T cells. J Exp Med. 2008;205(6):1369–79.

    Google Scholar 

  26. Bauquet A, Jin H, Am, Mitsdoerffer M, Ho I, Sharpe A, et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol. 2009;10(2):167.

    CAS  PubMed  Google Scholar 

  27. O'Garra A. Interleukin-10 production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity. 2009;31(2):209–19.

    PubMed  PubMed Central  Google Scholar 

  28. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol. 2008;131(12):1347–55.

    Google Scholar 

  29. Huang Z, Xie H, Wang R, Sun Z. Retinoid-related orphan receptor γt is a potential therapeutic target for controlling inflammatory autoimmunity. Expert Opin Ther Targets. 2007;11(6):737–43.

    CAS  PubMed  Google Scholar 

  30. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33.

    CAS  PubMed  Google Scholar 

  31. Hirota K, Martin B, Veldhoen M. Development, regulation and functional capacities of Th17 cells. Semin Immunopathol. 2010;32(1):3–16.

    CAS  PubMed  Google Scholar 

  32. Eberl G, Littman DR. Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORgammat+ cells. Science. 2004;305(5681):248–51.

    CAS  PubMed  Google Scholar 

  33. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008;28(1):29–39.

    CAS  PubMed  Google Scholar 

  34. Marc V, Keiji H, Westendorf AM, Jan B, Laure D, Jean-Christophe R, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453(7191):106–9.

    Google Scholar 

  35. Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci U S A. 2008;105(28):9721–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Veldhoen M, Hirota K, Christensen J, O'Garra A, Stockinger B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med. 2009;206(1):43–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Awasthi A, Riol BL, Jager A, Korn T, Pot C, Galileos G, et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol. 2009;182(10):5904–8.

    CAS  PubMed  Google Scholar 

  38. Aggarwal S, Ghilardi N, Xie M-H, Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278(3):1910–4. https://doi.org/10.1074/JBC.M207577200.

    Article  CAS  PubMed  Google Scholar 

  39. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25. https://doi.org/10.1016/S1074-7613(00)00070-4.

    Article  CAS  PubMed  Google Scholar 

  40. Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Hong SK, et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 2009;30(4):576–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ichiyama K, Gonzalezmartin A, Kim BS, Jin HY, Jin W, Xu W, et al. The microRNA-183-96-182 cluster promotes T helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression. Immunity. 2016;44(6):1284–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ghoreschi K, Laurence A, Yang X-P, Tato CM, McGeachy MJ, Konkel JE, et al. Generation of pathogenic T H 17 cells in the absence of TGF-β signalling. Nature. 2010;467(7318):967–71. https://doi.org/10.1038/NATURE09447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling 30(4):576–87.

  44. Ichiyama K, Gonzalez-Martin A, Kim B-S, Jin HY, Jin W, Xu W, et al. The microRNA-183-96-182 cluster promotes T helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression. Immunity. 44(6):1284–98.

  45. Lubberts, Erik. The IL-23–IL-17 axis in inflammatory arthritis. Nature Reviews Rheumatology.11(7):415–29.

  46. Paulissen SMJ, van Hamburg JP, Dankers W, Lubberts E. The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis. Cytokine.74(1):43–53.

  47. Eb L, Kk W, Mp L, T B, Jj W. Psoriasis risk factors and triggers. cutis. 2018;102.

  48. Kamali AN, Noorbakhsh SM, Hamedifar H, Jadidi-Niaragh F, Yazdani R, Bautista JM, et al. A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders. Mol Immunol. 2019;105:107–15. https://doi.org/10.1016/j.molimm.2018.11.015.

    Article  CAS  PubMed  Google Scholar 

  49. Verstappen GM, Corneth OBJ, Bootsma H, Kroese FGM. Th17 cells in primary Sjögren’s syndrome: pathogenicity and plasticity. J Autoimmun. 2017;87:16.

    PubMed  Google Scholar 

  50. Van Langelaar J, van der Vuurst de Vries RM, Janssen M, Wierenga-Wolf AF, Spilt IM, Siepman TA, et al. T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention. Brain. .

  51. Boniface K, Blumenschein WM, Brovont-Porth K, McGeachy MJ, Basham B, Desai B, et al. Human Th17 cells comprise heterogeneous subsets including IFN-?-producing cells with distinct properties from the Th1 lineage. J Immunol. 185(1):679–87.

  52. Paul D, Anna N, A. KM, V. RJ, Claudia W, Yasushi K et al. IL-10 Receptor signaling empowers regulatory T cells to control Th17 responses and protect from GN. J Am Soc Nephrol.ASN.2017091044-.

  53. Gregori S, Bacchetta R, Roncarolo MG, Battaglia M. Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. 2014;380:39–68.

  54. Gagliani N, Vesely MCA, Iseppon A, Brockmann L, Xu H, Palm NW et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature.523(7559):221–5.

  55. Lebwohl M. Psoriasis. Lancet. 2003;361(9364):1197–204.

    PubMed  Google Scholar 

  56. Christophers E. Psoriasis - epidemiology and clinical spectrum. Clin Exp Dermatol. 2010;26(4):314–20.

    Google Scholar 

  57. Augustin M, Glaeske G, Radtke MA, Christophers E, Reich K, Schäfer I. Epidemiology and comorbidity of psoriasis in children. Br J Dermatol. 2010;162(3):633–6.

    CAS  PubMed  Google Scholar 

  58. Anderson PC. Fitzpatrick’s dermatology in general medicine, vols 1–2. Jama J Am Med Assoc. 1999;282(8):798.

    Google Scholar 

  59. Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361(5):496–509. https://doi.org/10.1056/NEJMra0804595.

    Article  CAS  PubMed  Google Scholar 

  60. Rapp S. Psoriasis causes as much disability as other major medical diseases. J Am Acad Dermatol. 1999;41(1):401–7.

    CAS  PubMed  Google Scholar 

  61. Griffiths CEM, Barker JNWN. Pathogenesis and clinical features of psoriasis. Lancet. 2007;370(9583):263–71.

    CAS  PubMed  Google Scholar 

  62. Greb JE, Goldminz AM, Elder JT, Lebwohl MG, Gladman DD, Wu JJ, et al. Psoriasis. Nat Rev Dis Primers. 2016;2:16082. https://doi.org/10.1038/nrdp.2016.82.

    Article  PubMed  Google Scholar 

  63. Lew W, Bowcock AM, Krueger JG. Psoriasis vulgaris: cutaneous lymphoid tissue supports T-cell activation and "type 1" inflammatory gene expression. Trends Immunol. 2004;25(6):295–305.

    CAS  PubMed  Google Scholar 

  64. Cesare AD, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Investig Dermatol. 2009;129(6):1339–50.

    PubMed  Google Scholar 

  65. Basavaraj KH, Ashok NM, Rashmi R, Praveen TK. The role of drugs in the induction and/or exacerbation of psoriasis. Int J Dermatol. 2010;49(12):1351–61.

    CAS  PubMed  Google Scholar 

  66. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang Y-H, Homey B, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–9.

    CAS  PubMed  Google Scholar 

  67. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MAD, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 2007;13(9):1042–9.

    CAS  PubMed  Google Scholar 

  68. Wolf R, Howard OMZ, Dong H-F, Voscopoulos C, Boeshans K, Winston J, et al. Chemotactic activity of S100A7 (Psoriasin) is mediated by the receptor for advanced glycation end products and potentiates inflammation with highly homologous but functionally distinct S100A15. J Immunol. 2008;181(2):1499–506.

    CAS  PubMed  Google Scholar 

  69. Shin M, Gallo RL. Antimicrobial peptides in the pathogenesis of psoriasis. J Dermatol. 2012;39(3):225–30.

    Google Scholar 

  70. Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med. 2009;206(9):1983–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Steinman L. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell–mediated tissue damage. Nat Med. 2007;13(2):139–45.

    CAS  PubMed  Google Scholar 

  72. Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS, et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Investig Dermatol. 2008;128(5):1207–11.

    CAS  PubMed  Google Scholar 

  73. Bettelli E, Oukka M, Kuchroo VK. TH-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8(4):345–50.

    CAS  PubMed  Google Scholar 

  74. Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol. 2017;140(3):645–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol (Baltimore, Md : 1950). 1993;150(12):5445–56.

    CAS  Google Scholar 

  76. Taams LS, Steel KJA, Srenathan U, Burns LA, Kirkham BW. IL-17 in the immunopathogenesis of spondyloarthritis. Nat Rev Rheumatol. 2018;14(8):453–66. https://doi.org/10.1038/s41584-018-0044-2.

    Article  CAS  PubMed  Google Scholar 

  77. Kuestner RE, Taft DW, Haran A, Brandt CS, Brender T, Lum K, et al. Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol. 179(8):5462–73.

  78. Brembilla NC, Senra L, Boehncke WH. The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front Immunol. 2018;9. https://doi.org/10.3389/FIMMU.2018.01682.

  79. Kramer JM, Yi L, Shen F, Maitra A, Jiao X, Jin T et al. Evidence for ligand-independent multimerization of the IL-17 receptor. 2006;176(2):711.

  80. Toy D, Kugler D, Wolfson M, Bos TV, Gurgel J, Derry J, et al. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol. 177(1):36–9.

  81. Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. 1995;187(9):811–21.

  82. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009;9(8):556–67. https://doi.org/10.1038/NRI2586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Afzali B, Lombardi G, Lechler RI, Lord GM. The role of T helper 17 (TH17) and regulatory T cells (TREG) in human organ transplantation and autoimmune disease. Clin Exp Immunol. 2007;148(1):32–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Muromoto R, Hirao T, Tawa K, Hirashima K, Kon S, Kitai Y et al. IL-17A plays a central role in the expression of psoriasis signature genes through induction of IκB-ζ in keratinocytes. Int Immunol dxw011.

  85. Chen C, Na W, Qiqi D, Huizi Y, Xin W, Peiwen Y et al. C10orf99 contributes to the development of psoriasis by promoting the proliferation of keratinocytes. Sci Rep 8(1):8590-.

  86. Varma SR, Sivaprakasam TO, Mishra A, Prabhu S, M R, P R. Imiquimod-induced psoriasis-like inflammation in differentiated Human keratinocytes: its evaluation using curcumin. Eur J Pharmacol 2017;813:33–41. https://doi.org/10.1016/j.ejphar.2017.07.040.

  87. Benhadou F, Mintoff D, Marmol V. Psoriasis: keratinocytes or immune cells - which is the trigger? Dermatology. 2019;235(2):91–100. https://doi.org/10.1159/000495291.

    Article  CAS  PubMed  Google Scholar 

  88. Pfaff CM, Marquardt Y, Fietkau K, Baron JM, Luscher B. The psoriasis-associated IL-17A induces and cooperates with IL-36 cytokines to control keratinocyte differentiation and function. Sci Rep. 2017;7(1):15631. https://doi.org/10.1038/s41598-017-15892-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu M, Lu H, Lee Y-H, Wu Y, Liu K, Shi Y et al. An interleukin-25-mediated autoregulatory circuit in keratinocytes plays a pivotal role in psoriatic skin inflammation. Immunity; S107476131830116X.

  90. Kolbinger F, Loesche C, Valentin M-A, Jiang X, Cheng Y, Jarvis P et al. β-defensin-2 is a responsive biomarker of IL-17A-driven skin pathology in psoriasis. J Allergy Clin Immunol. S0091674916307771.

  91. Lee JS, Tato CM, Joyce-Shaikh B, Gulan F, Cua DJ. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity. 2015;43(4):727–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dolff S, Witzke O, Wilde B. Th17 cells in renal inflammation and autoimmunity. Autoimmun Rev. 2019;18(2):129–36. https://doi.org/10.1016/j.autrev.2018.08.006.

    Article  CAS  PubMed  Google Scholar 

  93. Roussel L, Houle F, Chan C, Yao Y, Berube J, Olivenstein R, et al. IL-17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation. J Immunol. 184(8):4531–7.

  94. Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32(1):227–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tetsuya H, Yutaka O, Masashi T, Ako K, Yasushi H, Kaori K, et al. Recruitment of CCR6-expressing Th17 cells by CCL 20 secreted from IL-1β-, TNF-α-, and IL-17A-stimulated endometriotic stromal cells. Endocrinology. 2010;11:11.

    Google Scholar 

  96. Recombinant murine interleukin 4 protein therapy for psoriasis in a transgenic VEGF mouse model. Dermatology. 2009;219(3):232–8.

  97. Lee AY, Körner H. CCR6/CCL20 chemokine axis in human immunodeficiency virus immunity and pathogenesis. 2017;98(3):338.

  98. Emmanuel SV, Helmut F, Jagadeesh B, C SD. IL-26: an emerging proinflammatory member of the IL-10 cytokine family with multifaceted actions in antiviral, antimicrobial, and autoimmune responses. Plos Pathogens.12(6):e1005624-.

  99. Wang M, Zhang S, Zheng G, Huang J, Songyang Z, Zhao X, et al. Gain-of-function mutation of Card14 leads to spontaneous psoriasis-like skin inflammation through enhanced keratinocyte response to IL-17A. Immunity. 2018;49(1):66–79.e5. https://doi.org/10.1016/j.immuni.2018.05.012.

    Article  CAS  PubMed  Google Scholar 

  100. Lockshin B, Balagula Y, Merola JF. Interleukin-17, inflammation, and cardiovascular risk in patients with psoriasis. J Am Acad Dermatol. 2018;79(2).

  101. Saunte DM, Mrowietz U, Puig L, Zachariae C. Candida infections in patients with psoriasis and psoriatic arthritis treated with interleukin-17 inhibitors and their practical management. Br J Dermatol. 2017;177(1).

  102. Johansen C, Usher PA, Kjellerup RB, Lundsgaard D, Kragballe K. Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol. 2008;160(2):319–24.

    PubMed  Google Scholar 

  103. Kawaguchi M, Onuchic LF, Li X-D, Essayan DM, Schroeder J, Xiao H-Q, et al. Identification of a novel cytokine, ML-1, and its expression in subjects with asthma. J Immunol. 167(8):4430–5.

  104. Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity. 43(6):1040–51.

  105. Santibanez JF, Bugarski D, Okic-Dordevic I, Mojsilovic S, Kukolj T, Obradovic H et al. An overview of interleukin-17A and interleukin-17 receptor A structure, interaction and signaling. Protein Pept Lett. 2015;22(7):-.

  106. McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity. 2019;50(4):892–906. https://doi.org/10.1016/j.immuni.2019.03.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pantelyushin S, Haak S, Ingold B, Kulig P, Becher B. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J Clin Investig. 2012;122(6):2252–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Van dF, L., Mourits S, Voerman JSA, Kant M, Boon L, Laman JD et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182(9):5836–45.

  109. Soderstrom C, Berstein G, Zhang W, Valdez H, Fitz L, Kuhn M et al. Ultra-sensitive measurement of IL-17A and IL-17F in psoriasis patient serum and skin. Aaps J 19(4):1218–22.

  110. Akimzhanov AM, Yang XO, Dong C. Chromatin remodeling of interleukin-17 (IL-17)-IL-17F cytokine gene locus during inflammatory helper T Cell differentiation. J Biol Chem.282(9):5969–72.

  111. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses 30(1):108–19.

  112. Whibley N, Tritto E, Traggiai E, Kolbinger F, Moulin P, Brees D, et al. Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis. J Leukoc Biol. 2016;99(6):1153–64. https://doi.org/10.1189/jlb.4A0915-428R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fujishima S, Watanabe H, Kawaguchi M, Suzuki T, Matsukura S, Homma T, et al. Involvement of IL-17F via the induction of IL-6 in psoriasis. Arch Dermatol Res. 302(7):499–505.

  114. Nakajima M, Kawaguchi M, Ota K, Fujita J, Matsukura S, Huang S-K, et al. IL-17F induces IL-6 via TAK1-NFκB pathway in airway smooth muscle cells. Immun Inflamm Dis. 5(2):124–31.

  115. Goodman WA, Levine AD, Massari JV, Sugiyama H, McCormick TS, Cooper KD. IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. J Immunol. 183(5):3170–6.

  116. Watanabe H, Kawaguchi M, Fujishima S, Ogura M, Matsukura S, Takeuchi H, et al. Functional characterization of IL-17F as a selective neutrophil attractant in psoriasis. J Invest Dermatol. 129(3):650–6.

  117. Kawaguchi, M. Induction of C-X-C chemokines, growth-related oncogene ? expression, and epithelial cell-derived neutrophil-activating protein-78 by ML-1 (interleukin-17F) involves activation of Raf1-mitogen-activated protein kinase kinase-extracellular signal-regulated K. J Pharmacol Exp Ther 307(3):1213–20.

  118. Florian W, Yilang T, Konrad G, Sabrina K, Sonja M, Judith H, et al. Expression of IL-17F is associated with non-pathogenic Th17 cells. J Mol Med.

  119. Ce T, Shigeru K, Kenji S, Motohiko K, Tomonori K, Tomoyuki S, et al. Suppression of IL-17F, but not of IL-17A, provides protection against colitis by inducing Treg cells through modification of the intestinal microbiota. Nat Immunol. 2018.

  120. Archer NK, Adappa ND, Palmer JN, Cohen NA, Shirtliff ME. IL-17A and IL-17F are critical for antimicrobial peptide production and clearance of Staphylococcus aureus nasal colonization. Infect Immun. 2016;84(12):IAI.00596–16.

    Google Scholar 

  121. Narita K, Asano K, Nakane A. IL-17A plays an important role in protection induced by vaccination with fibronectin-binding domain of fibronectin-binding protein A against Staphylococcus aureusinfection. Med Microbiol Immunol. 206(3):225–34.

  122. Glatt S, Baeten D, Baker T, Griffiths M, Ionescu L, Lawson ADG et al. Dual IL-17A and IL-17F neutralisation by bimekizumab in psoriatic arthritis: evidence from preclinical experiments and a randomised placebo-controlled clinical trial that IL-17F contributes to human chronic tissue inflammation. Annals of the Rheumatic Diseases. 2018;77(4):523-.

  123. Papp KA, Merola JF, Gottlieb AB, Griffiths CEM, Cross N, Peterson L et al. Dual neutralization of both IL-17A and IL-17F with bimekizumab in patients with psoriasis: results from BE ABLE 1, a 12-week randomized, double-blinded placebo-controlled phase 2b trial. Journal of the American Academy of Dermatology.S0190962218304912.

  124. Glatt S, Helmer E, Haier B, Strimenopoulou F, Price G, Vajjah P et al. First-in-human randomized study of bimekizumab, a humanized monoclonal antibody and selective dual inhibitor of IL-17A and IL-17F, in mild psoriasis. 2017;83(5):991.

  125. Blauvelt A, Papp KA, Merola JF, Gottlieb AB, Cross N, Madden C, et al. Bimekizumab for patients with moderate-to-severe plaque psoriasis: 60-week results from BE ABLE 2, a randomized, double-blinded, placebo-controlled phase 2b extension study. J Am Acad Dermatol. 2020. https://doi.org/10.1016/J.JAAD.2020.05.105.

  126. Wolk K, Kunz S, Asadullah K, Sabat R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol. 168(11):5397–402.

  127. Dumoutier L, Louahed J, Renauld J-C. Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol. 164(4):1814–9.

  128. Zhang X, Liu S, Wang Y, Hu H, Li L, Wu Y, et al. Interleukin22 regulates the homeostasis of the intestinal epithelium during inflammation. Int J Mol Med. 2019;43(4):1657–68. https://doi.org/10.3892/ijmm.2019.4092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dudakov JA, Hanash AM, van den Brink MRM. Interleukin-22: immunobiology and pathology. Annu Rev Immunol. 33(1):747–85.

  130. Dumoutier L, Van Roost E, Ameye G, Michaux L, Renauld J-C. IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes. Genes Immun. 1(8):488–94.

  131. Xie MH, Aggarwal S, Ho W-H, Foster J, Zhang Z, Stinson J, et al. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem. 275(40):31335–9.

  132. Li J, Tomkinson KN, Tan X-Y, Wu P, Yan G, Spaulding V et al. Temporal associations between interleukin 22 and the extracellular domains of IL-22R and IL-10R2. Int Immunopharmacol 4(5):0–708.

  133. Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP et al. Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta ) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. 2001;276(4):2725.

  134. Pestka S, Krause CD, Sarkar D, Walter MR, Fisher PB. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol. 2004;22:929–79.

    CAS  PubMed  Google Scholar 

  135. Zheng Y, Feng K, Yang H, Duan R, Wu Y, Yin J, et al. IL-22/IL-22R1 axis is involved in myocardial injury of a mouse cecal ligation and puncture model. Am J Transl Res. 2019;11(2):998–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sabat R, Ouyang W, Wolk K. Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov. 2014;13(1):21–38. https://doi.org/10.1038/nrd4176.

    Article  CAS  PubMed  Google Scholar 

  137. Logsdon NJ, Jones BC, Allman JC, Izotova L, Schwartz B, Pestka S, et al. The IL-10R2 binding hot spot on IL-22 is located on the N-terminal helix and is dependent on N-linked glycosylation. J Mol Biol. 342(2):0–514.

  138. Yoon SI, Jones BC, Logsdon NJ, Harris BD, Deshpande A, Radaeva S et al. Structure and mechanism of receptor sharing by the IL-10R2 common chain.18(5):638–48.

  139. Jones BC, Logsdon NJ, Walter MR. Structure of IL-22 bound to its high-Affinity IL-22R1 chain. Structure. 2008;16(9):1333–44. https://doi.org/10.1016/J.STR.2008.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zenewicz LA. IL-22: there is a gap in our knowledge. ImmunoHorizons. 2018;2(6):198–207. https://doi.org/10.4049/immunohorizons.1800006.

    Article  CAS  PubMed  Google Scholar 

  141. Tohyama M, Shirakata Y, Hanakawa Y, Dai X, Shiraishi K, Murakami M, et al. Bcl-3 induced by IL-22 via STAT3 activation acts as a potentiator of psoriasis-related gene expression in epidermal keratinocytes. Eur J Immunol. 2018;48(1):168–79. https://doi.org/10.1002/eji.201747017.

    Article  CAS  PubMed  Google Scholar 

  142. Sabat R, Ouyang W, Wolk K. Therapeutic opportunities of the IL-22-IL-22R1 system. nature reviews drug discovery. 2014;13(1):21–38. https://doi.org/10.1038/NRD4176.

  143. Sobhan MR, Farshchian M, Hoseinzadeh A, Ghasemibasir HR, Solgi G. Serum levels of IL-10 and IL-22 cytokines in patients with psoriasis. Iran J Immunol : IJI. 2016;13(4):317–23. IJIv13i4A8.

  144. Denning TL, Parkos CA. Neutrophils enlist IL-22 to restore order in the gut. Proceedings of the National Academy of Sciences of the United States of America.110(31):12509–10.

  145. Rutz S, Eidenschenk C, Ouyang W. IL-22, not simply a Th17 cytokine. Immunol Rev. 2013;252(1):116–32. https://doi.org/10.1111/imr.12027.

    Article  CAS  PubMed  Google Scholar 

  146. Mcgee HM, Schmidt BA, Booth CJ, Yancopoulos GD, Valenzuela DM, Murphy AJ, et al. IL-22 promotes fibroblast-mediated wound repair in the skin. J Investig Dermatol. 133(5):1321–9.

  147. Tomohiro F, Takehito F, Tomofumi U, Hideaki T, Junta N, Noriaki M et al. Pivotal role of IL-22 binding protein in the epithelial autoregulation of interleukin-22 signaling in the control of skin inflammation. Front Immunol 9:1418-.

  148. Sabat R, Wolk K. Research in practice: IL-22 and IL-20: significance for epithelial homeostasis and psoriasis pathogenesis 9(7):518–23.

  149. Yoon J, Leyva-Castillo JM, Wang G, Galand C, Oyoshi MK, Kumar L et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med.jem.20150376.

  150. Otsuka Y, Watanabe E, Shinya E, Okura S, Saeki H, Geijtenbeek TBH et al. Differentiation of langerhans cells from monocytes and their specific function in inducing IL-22-specific Th cells. J Immunol (Baltimore, Md : 1950). 2018;201(10):3006–16. https://doi.org/10.4049/jimmunol.1701402.

  151. Fits LVD, Wel LIVD, Laman J, Prens E, Verschuren M. In psoriasis lesional skin the type I interferon signaling pathway is activated, whereas interferon-α sensitivity is unaltered 2004;122(1):51–60.

  152. Boniface K, Bernard F, Garcia M, Gurney AL, Lecron JC, Morel F. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. 2005;174(6):3695–702.

  153. Conrad C, Di Domizio J, Mylonas A, Belkhodja C, Demaria O, Navarini AA et al. TNF blockade induces a dysregulated type I interferon response without autoimmunity in paradoxical psoriasis. Nat Commun 9(1):25.

  154. Guttmanyassky E, Brunner PM, Neumann AU. Efficacy and safety of fezakinumab (an anti-IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments - a randomized, double-blind, phase 2a trial. 2018;137(5):2017.

  155. Parrish-Novak J. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature. 2000;408(6808):57–63.

    CAS  PubMed  Google Scholar 

  156. Monteleone G, Pallone F, Macdonald TT. Interleukin-21 (IL-21)-mediated pathways in T cell-mediated disease. Cytokine Growth Factor Rev 20(2):0–191.

  157. Gharibi T, Majidi J, Kazemi T, Dehghanzadeh R, Motallebnezhad M, Babaloo Z. Biological effects of IL-21 on different immune cells and its role in autoimmune diseases. Immunobiology.S0171298515300723.

  158. Tangye, G S. Advances in IL-21 biology—enhancing our understanding of human disease. Current Opinion in Immunology.34:107–15.

  159. Hamming OJ, Kang L, Svensson A, Karlsen JL, Rahbek-Nielsen H, Paludan SR et al. Crystal structure of interleukin-21 receptor (IL-21R) bound to IL-21 reveals that sugar chain interacting with WSXWS motif is integral part of IL-21R. J Biol Chem 287(12):9454–60.

  160. Spolski R, Leonard WJ. IL-21 and T follicular helper cells. Int Immunol 22(1):7–12.

  161. Ettinger R, Kuchen S, Lipsky PE. The role of IL-21 in regulating B-cell function in health and disease&nbsp. Immunol Rev. 2008;223(1):60–86.

    CAS  PubMed  Google Scholar 

  162. Yoshizaki A, Tedder TF. [IL-21 induces regulatory B cell differentiation and immunosuppressive effect through cognate interaction with T cells]. 2015;38(1):57.

  163. Tian Y, Zajac AJ. IL-21 and T cell differentiation: consider the context. Trends in Immunology.S1471490616300564.

  164. Ojo EO, Sharma AA, Liu R, Moreton S, Checkley-Luttge MA, Gupta K, et al. Membrane bound IL-21 based NK cell feeder cells drive robust expansion and metabolic activation of NK cells. Sci Rep. 2019;9(1):14916. https://doi.org/10.1038/s41598-019-51287-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Venkatasubramanian S, Cheekatla S, Paidipally P, Tripathi D, Welch E, Tvinnereim AR et al. IL-21-dependent expansion of memory-like NK cells enhances protective immune responses against Mycobacterium tuberculosis. mucosal immunology. 2017;10(4):1031–42. https://doi.org/10.1038/MI.2016.105.

  166. Brandt, K. Interleukin-21 inhibits dendritic cell activation and maturation. Blood.102(12):4090–8.

  167. Caruso R, Costanzo A, Monteleone G. Pathogenic role of interleukin-21 in psoriasis. Cell Cycle 8(22):3629–30.

  168. Caruso R, Botti E, Sarra M, Esposito M, Stolfi C, Diluvio L, et al. Involvement of interleukin-21 in the epidermal hyperplasia of psoriasis. Nat Med. 2009;15(9):1013–5. https://doi.org/10.1038/NM.1995.

    Article  CAS  PubMed  Google Scholar 

  169. Kim HJ, Kim SH, Kim TG, Park JY, Lee M, Kim DS, et al. Interleukin-21 receptor signalling is not critically required for imiquimod-induced psoriasiform dermatitis in mice. Exp Dermatol. 2018;27(2):191–5. https://doi.org/10.1111/EXD.13481.

    Article  CAS  PubMed  Google Scholar 

  170. De OPSS, Gualberto CPR, Andrade LEVd, Cristiny PM, Pinto DALB, Rocha PId et al. IL-17A, IL-22, IL-6, and IL-21 serum levels in plaque-type psoriasis in Brazilian patients. Mediat Inflamm2015:1–5.

  171. Ying W, Wang LL, Yang HY, Wang FF, Bai YP. Interleukin-21 is associated with the severity of psoriasis vulgaris through promoting CD4+ T cells to differentiate into Th17 cells. Am J Transl Res. 2016;8(7):3188–96.

    Google Scholar 

  172. Sarra M, Caruso R, Cupi ML, Monteleone I, Stolfi C, Campione E, et al. IL-21 promotes skin recruitment of CD4+ cells and drives IFN-?-dependent epidermal hyperplasia. J Immunol. 186(9):5435–42.

  173. Shi Y, Chen Z, Zhao Z, Yu Y, Fan H, Xu X, et al. IL-21 induces an imbalance of Th17/Treg cells in moderate-to-severe plaque psoriasis patients. Front Immunol. 2019;10:1865. https://doi.org/10.3389/fimmu.2019.01865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fina D, Sarra M, Fantini MC, Rizzo A, Caruso R, Caprioli F, et al. Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology. 2008;134(4):1038–48. https://doi.org/10.1053/j.gastro.2008.01.041.

    Article  CAS  PubMed  Google Scholar 

  175. Nestle F, Villanova F. Faculty opinions recommendation of IL-29 is produced by T(H)17 cells and mediates the cutaneous antiviral competence in psoriasis. 2013.

  176. Gedebjerg A, Johansen C, Kragballe K, Iversen L. IL-20, IL-21 and p40: potential biomarkers of treatment response for ustekinumab. Acta Derm Venereol.93(2):150–5.

  177. Yiu ZZN, Warren RB. Ustekinumab for the treatment of psoriasis: an evidence update. seminars in cutaneous medicine and surgery. 2018;37(3):143–7. https://doi.org/10.12788/J.SDER.2018.040.

  178. Knappe A, Hör S, Wittmann S, Fickenscher H. Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with Herpesvirus saimiri. J Virol. 2000;74(8):3881–7. https://doi.org/10.1128/JVI.74.8.3881-3887.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Donnelly RP, Sheikh F, Dickensheets H, Savan R, Young HA, Walter MR. Interleukin-26: an IL-10-related cytokine produced by Th17 cells. cytokine & growth factor reviews. 2010;21(5):393–401. https://doi.org/10.1016/J.CYTOGFR.2010.09.001.

  180. Hör S, Pirzer H, Dumoutier L, Bauer F, Wittmann S, Sticht H, et al. The T-cell lymphokine interleukin-26 targets epithelial cells through the interleukin-20 receptor 1 and interleukin-10 receptor 2 chains. J Biol Chem. 2004;279(32):33343–51. https://doi.org/10.1074/JBC.M405000200.

    Article  PubMed  Google Scholar 

  181. Dambacher J, Beigel F, Zitzmann K, Toni END, Göke B, Diepolder HM, et al. The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut. 2009;58(9):1207–17. https://doi.org/10.1136/GUT.2007.130112.

    Article  CAS  PubMed  Google Scholar 

  182. Corvaisier M, Delneste Y, Jeanvoine H, Preisser L, Blanchard S, Garo E, et al. IL-26 is overexpressed in rheumatoid arthritis and induces proinflammatory cytokine production and Th17 cell generation. PLoS Biol. 2012;10(9). https://doi.org/10.1371/JOURNAL.PBIO.1001395.

  183. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007;8(9):950–7. https://doi.org/10.1038/NI1497.

    Article  CAS  PubMed  Google Scholar 

  184. Itoh T, Hatano R, Komiya E, Otsuka H, Narita Y, Aune TM, et al. Biological effects of IL-26 on T cell-mediated skin inflammation, including psoriasis. J Invest Dermatol. 2019;139(4):878–89. https://doi.org/10.1016/J.JID.2018.09.037.

    Article  CAS  PubMed  Google Scholar 

  185. Hatano R, Itoh T, Otsuka H, Okamoto S, Komiya E, Iwata S, et al. Characterization of novel anti-IL-26 neutralizing monoclonal antibodies for the treatment of inflammatory diseases including psoriasis. mabs. 2019;11(8):1428–42. https://doi.org/10.1080/19420862.2019.1654305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Weiss DI, Ma F, Merleev AA, Maverakis E, Gilliet M, Balin SJ, et al. IL-1β induces the rapid secretion of the antimicrobial protein IL-26 from Th17 cells. J Immunol. 2019;203(4):911–21. https://doi.org/10.4049/JIMMUNOL.1900318.

    Article  CAS  PubMed  Google Scholar 

  187. Meller S, Domizio JD, Voo KS, Friedrich HC, Chamilos G, Ganguly D, et al. TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26. Nat Immunol. 2015;16(9):970–9. https://doi.org/10.1038/NI.3211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kragstrup TW, Andersen T, Heftdal LD, Hvid M, Gerwien J, Sivakumar P et al. The IL-20 cytokine family in rheumatoid arthritis and spondyloarthritis. frontiers in immunology. 2018;9. https://doi.org/10.3389/FIMMU.2018.02226.

Download references

Funding

This study was sponsored by China Pharmaceutical University “Double First-Class” University project (CPU2018GY32), National Major Scientific and Technological Special Project for “Significant New Drugs Development” during the Thirteenth Five-year Plan Period (No. 2016ZX09101031) and China Pharmaceutical University “Double First-Class” Construction Graduate Education and Teaching Project (JGYB201909).

Author information

Authors and Affiliations

Authors

Contributions

Binbin Li, Liangliang Huang: Conception and design

Binbin Li, Peng Lv, Xiang Li, Ge Liu, Yan Chen, Ziyu Wang, Xiaoxian Qian, Yixiao Shen: Acquisition of data

Binbin Li, Weirong Fang, Liangliang Huang, Peng Lv: Writing, review, and revision of the manuscript

Weirong Fang, Yunman Li: Study supervision

Corresponding authors

Correspondence to Yunman Li or Weirong Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Huang, L., Lv, P. et al. The role of Th17 cells in psoriasis. Immunol Res 68, 296–309 (2020). https://doi.org/10.1007/s12026-020-09149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-020-09149-1

Keywords

Navigation