Skip to main content

IgM ANCA in healthy individuals and in patients with ANCA-associated vasculitis

Abstract

Low levels of IgM auto-antibodies have been reported in health and disease. IgM anti-neutrophil cytoplasmic antibodies (ANCA) have been reported in patients with ANCA-associated vasculitis (AAV). We sought to investigate if healthy individuals may have IgM ANCA in their sera. The first aim of the study was to determine whether IgM ANCA was present in healthy individuals and in patients with ANCA-associated vasculitis. The second aim was to determine what happens to IgM ANCA levels over time. The third aim was to determine whether bacterial infections affected IgM ANCA levels in non-AAV patients. Sera from healthy individuals and patients with AAV were tested for IgM ANCA by immunofluorescence on fixed neutrophils, immunoprecipitation, Western blot and ELISA. Peripheral blood mononuclear cells were isolated and tested by ELISpot for circulating IgM ANCA B cells. To determine whether infection affected IgM ANCA levels, we studied non-AAV patients with bacterial endocarditis or Staphylococcus aureus bacteraemia and measured IgM ANCA levels over time. IgM ANCA is detectable in both healthy individuals and patients with AAV and the titres decreased with increasing age. Circulating IgM ANCA B cells were identified by ELISpot. In the presence of infection, we could not find a significant change in IgM ANCA levels. We report the presence of low-level specific IgM ANCA in the sera of healthy individuals and in patients with ANCA-associated vasculitis. Bacterial infection did not affect the level of IgM ANCA in this small study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised international Chapel Hill consensus conference nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1–11. https://doi.org/10.1002/art.37715.

    CAS  Article  PubMed  Google Scholar 

  2. Kelley JM, Monach PA, Ji C, Zhou Y, Wu J, Tanaka S, et al. IgA and IgG antineutrophil cytoplasmic antibody engagement of fc receptor genetic variants influences granulomatosis with polyangiitis. Proc Natl Acad Sci U S A. 2011;108(51):20736–41. https://doi.org/10.1073/pnas.1109227109.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Esnault VL, Soleimani B, Keogan MT, Brownlee AA, Jayne DR, Lockwood CM. Association of IgM with IgG ANCA in patients presenting with pulmonary hemorrhage. Kidney Int. 1992;41(5):1304–10.

    CAS  Article  Google Scholar 

  4. Esnault VL, Ronda N, Jayne DR, Lockwood CM. Association of ANCA isotype and affinity with disease expression. J Autoimmun. 1993;6(2):197–205. https://doi.org/10.1006/jaut.1993.1017.

    CAS  Article  PubMed  Google Scholar 

  5. Jayne DR, Jones SJ, Severn A, Shaunak S, Murphy J, Lockwood CM. Severe pulmonary hemorrhage and systemic vasculitis in association with circulating anti-neutrophil cytoplasm antibodies of IgM class only. Clin Nephrol. 1989;32(3):101–6.

    CAS  PubMed  Google Scholar 

  6. Sandin C, Eriksson P, Segelmark M, Skogh T, Kastbom A. IgA- and SIgA anti-PR3 antibodies in serum versus organ involvement and disease activity in PR3-ANCA-associated vasculitis. Clin Exp Immunol. 2016;184(2):208–15. https://doi.org/10.1111/cei.12769.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Nassberger L, Sjoholm AG, Bygren P, Thysell H, Hojer-Madsen M, Rasmussen N. Circulating anti-neutrophil cytoplasm antibodies in patients with rapidly progressive glomerulonephritis and extracapillary proliferation. J Intern Med. 1989;225(3):191–6.

    CAS  Article  Google Scholar 

  8. Shida H, Nakazawa D, Tateyama Y, Miyoshi A, Kusunoki Y, Hattanda F, et al. The presence of anti-Lactoferrin antibodies in a subgroup of eosinophilic granulomatosis with Polyangiitis patients and their possible contribution to enhancement of neutrophil extracellular trap formation. Front Immunol. 2016;7:636. https://doi.org/10.3389/fimmu.2016.00636.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Clain JM, Hummel AM, Stone JH, Fervenza FC, Hoffman GS, Kallenberg CG, et al. Immunoglobulin (Ig) M antibodies to proteinase 3 in granulomatosis with polyangiitis and microscopic polyangiitis. Clin Exp Immunol. 2017;188(1):174–81. https://doi.org/10.1111/cei.12925.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Stegeman CA, Tervaert JW, Sluiter WJ, Manson WL, de Jong PE, Kallenberg CG. Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. Ann Intern Med. 1994;120(1):12–7.

    CAS  Article  Google Scholar 

  11. Miranda-Filloy JA, Veiga JA, Juarez Y, Gonzalez-Juanatey C, Gonzalez-Gay MA, Garcia-Porrua C. Microscopic polyangiitis following recurrent Staphylococcus aureus bacteremia and infectious endocarditis. Clin Exp Rheumatol. 2006;24(6):705–6.

    CAS  PubMed  Google Scholar 

  12. Kasmani R, Okoli K, Naraharisetty K, Gunning W, Shapiro JI, Ratnam S. Microscopic polyangiitis triggered by recurrent methicillin-resistant Staphylococcus aureus bacteremia. Int Urol Nephrol. 2010;42(3):821–4. https://doi.org/10.1007/s11255-009-9652-8.

    Article  PubMed  Google Scholar 

  13. Zycinska K, Wardyn KA, Zielonka TM, Demkow U, Traburzynski MS. Chronic crusting, nasal carriage of Staphylococcus aureus and relapse rate in pulmonary Wegener's granulomatosis. J Physiol Pharmacol. 2008;59(Suppl 6):825–31.

    PubMed  Google Scholar 

  14. Salmela A, Rasmussen N, Tervaert JWC, Jayne DRW, Ekstrand A, European Vasculitis Study G. Chronic nasal Staphylococcus aureus carriage identifies a subset of newly diagnosed granulomatosis with polyangiitis patients with high relapse rate. Rheumatology (Oxford). 2017;56(6):965–72. https://doi.org/10.1093/rheumatology/kex001.

    CAS  Article  Google Scholar 

  15. Stegeman CA, Tervaert JW, de Jong PE, Kallenberg CG. Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener's granulomatosis. Dutch co-Trimoxazole Wegener Study group. N Engl J Med. 1996;335(1):16–20.

    CAS  Article  Google Scholar 

  16. Satoskar AA, Suleiman S, Ayoub I, Hemminger J, Parikh S, Brodsky SV, et al. Staphylococcus infection-associated GN - Spectrum of IgA staining and prevalence of ANCA in a single-center cohort. Clin J Am Soc Nephrol. 2017;12(1):39–49. https://doi.org/10.2215/CJN.05070516.

    CAS  Article  PubMed  Google Scholar 

  17. Ying CM, Yao DT, Ding HH, Yang CD. Infective endocarditis with antineutrophil cytoplasmic antibody: report of 13 cases and literature review. PLoS One. 2014;9(2):e89777. https://doi.org/10.1371/journal.pone.0089777.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Mahr A, Batteux F, Tubiana S, Goulvestre C, Wolff M, Papo T, et al. Brief report: prevalence of antineutrophil cytoplasmic antibodies in infective endocarditis. Arthritis Rheumatol. 2014;66(6):1672–7. https://doi.org/10.1002/art.38389.

    Article  PubMed  Google Scholar 

  19. Bonaci-Nikolic B, Andrejevic S, Pavlovic M, Dimcic Z, Ivanovic B, Nikolic M. Prolonged infections associated with antineutrophil cytoplasmic antibodies specific to proteinase 3 and myeloperoxidase: diagnostic and therapeutic challenge. Clin Rheumatol. 2010;29(8):893–904. https://doi.org/10.1007/s10067-010-1424-4.

    Article  PubMed  Google Scholar 

  20. Medina F, Camargo A, Moreno J, Zonana-Nacach A, Aceves-Avila J, Fraga A. Anti-neutrophil cytoplasmic autoantibodies in leprosy. Br J Rheumatol. 1998;37(3):270–3.

    CAS  Article  Google Scholar 

  21. Efthimiou J, Spickett G, Lane D, Thompson A. Antineutrophil cytoplasmic antibodies, cystic fibrosis, and infection. Lancet. 1991;337(8748):1037–8.

    CAS  Article  Google Scholar 

  22. Boils CL, Nasr SH, Walker PD, Couser WG, Larsen CP. Update on endocarditis-associated glomerulonephritis. Kidney Int. 2015;87(6):1241–9. https://doi.org/10.1038/ki.2014.424.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hermann J, Demel U, Stunzner D, Daghofer E, Tilz G, Graninger W. Clinical interpretation of antineutrophil cytoplasmic antibodies: parvovirus B19 infection as a pitfall. Ann Rheum Dis. 2005;64(4):641–3.

    CAS  Article  Google Scholar 

  24. Yahya TM, Benedict S, Shalabi A, Bayoumi R. Anti-neutrophil cytoplasmic antibody (ANCA) in malaria is directed against cathepsin G. Clin Exp Immunol. 1997;110(1):41–4.

    CAS  Article  Google Scholar 

  25. Esquivel-Valerio JA, Flores-Suarez LF, Rodriguez-Amado J, Garza-Elizondo MA, Rendon A, Salinas-Carmona MC. Antineutrophil cytoplasm autoantibodies in patients with tuberculosis are directed against bactericidal/permeability increasing protein and are detected after treatment initiation. Clin Exp Rheumatol. 2010;28(1 Suppl 57):35–9.

    PubMed  Google Scholar 

  26. Asano S, Mizuno S, Okachi S, Aso H, Wakahara K, Hashimoto N, et al. Antineutrophil cytoplasmic antibody-associated Vasculitis superimposed on infection-related glomerulonephritis secondary to pulmonary Mycobacterium avium complex infection. Intern Med. 2016;55(17):2439–45. https://doi.org/10.2169/internalmedicine.55.6588.

    Article  PubMed  Google Scholar 

  27. Cui Z, Zhao MH, Segelmark M, Hellmark T. Natural autoantibodies to myeloperoxidase, proteinase 3, and the glomerular basement membrane are present in normal individuals. Kidney Int. 2010;78(6):590–7. https://doi.org/10.1038/ki.2010.198.

    CAS  Article  PubMed  Google Scholar 

  28. Xu PC, Cui Z, Chen M, Hellmark T, Zhao MH. Comparison of characteristics of natural autoantibodies against myeloperoxidase and anti-myeloperoxidase autoantibodies from patients with microscopic polyangiitis. Rheumatology (Oxford). 50(7):1236–43. https://doi.org/10.1093/rheumatology/ker085.

    CAS  Article  Google Scholar 

  29. Mathieson PW, Lockwood CM, Oliveira DB. T and B cell responses to neutrophil cytoplasmic antigens in systemic vasculitis. Clin Immunol Immunopathol. 1992;63(2):135–41.

    CAS  Article  Google Scholar 

  30. Avrameas S, Guilbert B, Mahana W, Matsiota P, Ternynck T. Recognition of self and non-self constituents by polyspecific autoreceptors. Int Rev Immunol. 1988;3(1–2):1–15.

    CAS  Article  Google Scholar 

  31. Avrameas S. Natural autoantibodies: from 'horror autotoxicus' to 'gnothi seauton'. Immunol Today. 1991;12(5):154–9. https://doi.org/10.1016/S0167-5699(05)80045-3.

    CAS  Article  PubMed  Google Scholar 

  32. Gronwall C, Silverman GJ. Natural IgM: beneficial autoantibodies for the control of inflammatory and autoimmune disease. J Clin Immunol. 2014;34(Suppl 1):S12–21. https://doi.org/10.1007/s10875-014-0025-4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Coutinho A, Kazatchkine MD, Avrameas S. Natural autoantibodies. Curr Opin Immunol. 1995;7(6):812–8.

    CAS  Article  Google Scholar 

  34. Lacroix-Desmazes S, Kaveri SV, Mouthon L, Ayouba A, Malanchere E, Coutinho A, et al. Self-reactive antibodies (natural autoantibodies) in healthy individuals. J Immunol Methods. 1998;216(1–2):117–37.

    CAS  Article  Google Scholar 

  35. Li JS, Sexton DJ, Mick N, Nettles R, Fowler VG Jr, Ryan T, et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis. 2000;30(4):633–8. https://doi.org/10.1086/313753.

    CAS  Article  PubMed  Google Scholar 

  36. Hurtado PR, Jeffs L, Nitschke J, Patel M, Sarvestani G, Cassidy J, et al. CpG oligodeoxynucleotide stimulates production of anti-neutrophil cytoplasmic antibodies in ANCA associated vasculitis. BMC Immunol. 2008;9:34.

    Article  Google Scholar 

  37. Vittecoq O, Brard F, Jovelin F, Le Loet X, Tron F, Gilbert D. IgM anti-myeloperoxidase antibody-secreting lymphocytes are present in the peripheral repertoire of lupus mice but rarely differentiate into IgG-producing cells. Clin Exp Immunol. 1999;118(1):122–30.

    CAS  Article  Google Scholar 

  38. Lacroix-Desmazes S, Mouthon L, Kaveri SV, Kazatchkine MD, Weksler ME. Stability of natural self-reactive antibody repertoires during aging. J Clin Immunol. 1999;19(1):26–34.

    CAS  Article  Google Scholar 

  39. Simell B, Lahdenkari M, Reunanen A, Kayhty H, Vakevainen M. Effects of ageing and gender on naturally acquired antibodies to pneumococcal capsular polysaccharides and virulence-associated proteins. Clin Vaccine Immunol. 2008;15(9):1391–7. https://doi.org/10.1128/CVI.00110-08.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Griffin DO, Holodick NE, Rothstein TL. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med. 2011;208(1):67–80. https://doi.org/10.1084/jem.20101499.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Karakas M, Koenig W, Zierer A, Herder C, Rottbauer W, Baumert J, et al. Myeloperoxidase is associated with incident coronary heart disease independently of traditional risk factors: results from the MONICA/KORA Augsburg study. J Intern Med. 2012;271(1):43–50. https://doi.org/10.1111/j.1365-2796.2011.02397.x.

    CAS  Article  PubMed  Google Scholar 

  42. Zhang R, Brennan ML, Fu X, Aviles RJ, Pearce GL, Penn MS, et al. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA. 2001;286(17):2136–42.

    CAS  Article  Google Scholar 

  43. van Leeuwen M, Kemna MJ, de Winther MP, Boon L, Duijvestijn AM, Henatsch D, et al. Passive immunization with hypochlorite-oxLDL specific antibodies reduces plaque volume in LDL receptor-deficient mice. PLoS One. 2013;8(7):e68039. https://doi.org/10.1371/journal.pone.0068039.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Duranton J, Bieth JG. Inhibition of proteinase 3 by [alpha]1-antitrypsin in vitro predicts very fast inhibition in vivo. Am J Respir Cell Mol Biol. 2003;29(1):57–61. https://doi.org/10.1165/rcmb.2002-0258OC.

    CAS  Article  PubMed  Google Scholar 

  45. Baslund B, Petersen J, Permin H, Wiik A, Wieslander J. Measurements of proteinase 3 and its complexes with alpha 1-proteinase inhibitor and anti-neutrophil cytoplasm antibodies (ANCA) in plasma. J Immunol Methods. 1994;175(2):215–25.

    CAS  Article  Google Scholar 

  46. Lobo PI. Role of natural autoantibodies and natural IgM anti-leucocyte autoantibodies in health and disease. Front Immunol. 2016;7:198. https://doi.org/10.3389/fimmu.2016.00198.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Silosi I, Silosi CA, Boldeanu MV, Cojocaru M, Biciusca V, Avramescu CS, et al. The role of autoantibodies in health and disease. Romanian J Morphol Embryol. 2016;57(2 Suppl):633–8.

    Google Scholar 

  48. Boes M, Schmidt T, Linkemann K, Beaudette BC, Marshak-Rothstein A, Chen J. Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc Natl Acad Sci U S A. 2000;97(3):1184–9.

    CAS  Article  Google Scholar 

  49. Jayne DR, Esnault VL, Lockwood CM. ANCA anti-idiotype antibodies and the treatment of systemic vasculitis with intravenous immunoglobulin. J Autoimmun. 1993;6(2):207–19. https://doi.org/10.1006/jaut.1993.1018.

    CAS  Article  PubMed  Google Scholar 

  50. Rossi F, Jayne DR, Lockwood CM, Kazatchkine MD. Anti-idiotypes against anti-neutrophil cytoplasmic antigen autoantibodies in normal human polyspecific IgG for therapeutic use and in the remission sera of patients with systemic vasculitis. Clin Exp Immunol. 1991;83(2):298–303.

    CAS  Article  Google Scholar 

  51. Franssen CF, Stegeman CA, Oost-Kort WW, Kallenberg CG, Limburg PC, Tiebosch A, et al. Determinants of renal outcome in anti-myeloperoxidase-associated necrotizing crescentic glomerulonephritis. J Am Soc Nephrol. 1998;9(10):1915–23.

    CAS  PubMed  Google Scholar 

  52. Longhurst C, Ehrenstein MR, Leaker B, Stevenson FK, Spellerberg M, Chapman C, et al. Analysis of immunoglobulin variable region genes of a human IgM anti-myeloperoxidase antibody derived from a patient with vasculitis. Immunology. 1996;87(2):334–8.

    CAS  Article  Google Scholar 

  53. Exley AR, Bacon PA, Luqmani RA, Kitas GD, Gordon C, Savage CO, et al. Development and initial validation of the Vasculitis damage index for the standardized clinical assessment of damage in the systemic vasculitides. Arthritis Rheum. 1997;40(2):371–80.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the Royal Adelaide Hospital Research Committee. We also thank the generosity of patients and healthy individuals who participated in this study. Thank you to Dr J Weislander of Department of Autoimmunology, Statens Seruminstitut, Copenhagen, Denmark for the gift of anti-PR3 rabbit polyclonal antibody.

Funding

This work was supported by the Royal Adelaide Hospital Renal research fund and the Royal Hobart Hospital Renal research fund.

Author information

Authors and Affiliations

Authors

Contributions

PRH, LJ and CAP conceived the study, performed the experiments and wrote the ethics applications.

PRH, AN, PT, ED, GBP, LJ and CAP assisted in patient sample collection and processing.

AN, PT, ED assisted with patient identification and sample collection.

PRH and KC created all figures.

KC performed all statistical analysis.

LJ wrote the manuscript draft.

All authors edited and contributed to the final draft.

Corresponding author

Correspondence to LS Jeffs.

Ethics declarations

This study complies with the Declaration of Helsinki. Both the University of Adelaide and University of Tasmania ethics committees provided approval. All patients gave informed consent before enrolment and blood collection.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeffs, L., Peh, C., Nelson, A. et al. IgM ANCA in healthy individuals and in patients with ANCA-associated vasculitis. Immunol Res 67, 325–336 (2019). https://doi.org/10.1007/s12026-019-09091-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-019-09091-x

Keywords

  • Anti-neutrophil cytoplasmic antibodies (ANCA)
  • IgM ANCA
  • ANCA-associated vasculitis (AAV)
  • Proteinase-3 (PR3)
  • Myeloperoxidase (MPO)