Skip to main content

Advertisement

Log in

Catalase expression of Propionibacterium acnes may contribute to intracellular persistence of the bacterium in sinus macrophages of lymph nodes affected by sarcoidosis

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Bacterial catalase is important for intracellular survival of the bacteria. This protein of Propionibacterium acnes, one of possible causes of sarcoidosis, induces hypersensitive Th1 immune responses in sarcoidosis patients. We examined catalase expression in cultured P. acnes isolated from 19 sarcoid and 18 control lymph nodes and immunohistochemical localization of the protein in lymph nodes from 43 sarcoidosis and 102 control patients using a novel P. acnes-specific antibody (PAC) that reacts with the catalase protein, together with the previously reported P. acnes-specific PAB and TIG antibodies. High catalase expression of P. acnes cells was found during stationary phase in more isolates from sarcoid than from non-sarcoid lymph nodes and was associated with bacterial survival under H2O2-induced oxidative stress. In many sarcoid and some control lymph nodes, catalase expression was detected at the outer margins of PAB-reactive Hamazaki-Wesenberg (HW) bodies in sinus macrophages, the same location as catalase expression on the surface of cultured P. acnes and the same distribution as bacterial cell membrane-bound lipoteichoic acid in HW bodies. Some or no catalase expression was detected in sarcoid granulomas with PAB reactivity or in clustered paracortical macrophages packed with many PAB-reactive small-round bodies. HW bodies expressing catalase may be persistent P. acnes in sinus macrophages whereas PAB-reactive small-round bodies with undetectable catalase may be activated P. acnes proliferating in paracortical macrophages. Intracellular proliferation of P. acnes in paracortical macrophages may lead to granuloma formation by this commensal bacterium in sarcoidosis patients with Th1 hypersensitivity to certain P. acnes antigens, including catalase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hunninghake GW, Costabel U, Ando M, Baughman R, Cordier JF, du Bois R, et al. ATS/ERS/WASOG statement on sarcoidosis. American Thoracic Society/European Respiratory Society/World Association of Sarcoidosis and other Granulomatous Disorders. Sarcoidosis Vasc Diffuse Lung Dis. 1999;16:149–73.

  2. McGrath DS, Goh N, Foley PJ, du Bois RM. Sarcoidosis: genes and microbes—soil or seed? Sarcoidosis Vasc Diffuse Lung Dis. 2001;18:149–64http://www.ncbi.nlm.nih.gov/pubmed/11436535.

  3. du Bois RM, Goh N, McGrath D, Cullinan P. Is there a role for microorganisms in the pathogenesis of sarcoidosis? J Intern Med. 2003;253:4–17 http://www.ncbi.nlm.nih.gov/pubmed/12588534.

  4. Drake WP, Newman LS. Mycobacterial antigens may be important in sarcoidosis pathogenesis. Curr Opin Pulm Med. 2006;12:359–63. https://doi.org/10.1097/01.mcp.0000239554.01068.94.

    Article  PubMed  Google Scholar 

  5. Homma JY, Abe C, Chosa H, Ueda K, Saegusa J, Nakayama M, et al. Bacteriological investigation on biopsy specimens from patients with sarcoidosis. Jpn J Exp Med. 1978;48:251–5 http://www.ncbi.nlm.nih.gov/pubmed/713130.

  6. Abe C, Iwai K, Mikami R, Hosoda Y. Frequent isolation of Propionibacterium acnes from sarcoidosis lymph nodes. Zentralbl Bakteriol Mikrobiol Hyg A. 1984;256:541–7 http://www.ncbi.nlm.nih.gov/pubmed/6377763.

  7. Ishige I, Usui Y, Takemura T, Eishi Y. Quantitative PCR of mycobacterial and propionibacterial DNA in lymph nodes of Japanese patients with sarcoidosis. Lancet. 1999;354:120–3. https://doi.org/10.1016/S0140-6736(98)12310-3.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou Y, Wei Y, Zhang Y, Du S, Baughman RP, Li H. Real-time quantitative reverse transcription-PCR to detect propionibacterial ribosomal RNA in the lymph nodes of Chinese patients with sarcoidosis. Clin Exp Immunol. 2015:511–7. https://doi.org/10.1111/cei.12650.

  9. Yamada T, Eishi Y, Ikeda S, Ishige I, Suzuki T, Takemura T, et al. In situ localization of Propionibacterium acnes DNA in lymph nodes from sarcoidosis patients by signal amplification with catalysed reporter deposition. J Pathol. 2002. https://doi.org/10.1002/path.1243.

  10. Negi M, Takemura T, Guzman J, Uchida K, Furukawa A, Suzuki Y, et al. Localization of Propionibacterium acnes in granulomas supports a possible etiologic link between sarcoidosis and the bacterium. Mod Pathol. 2012;25:1284–97. https://doi.org/10.1038/modpathol.2012.80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eishi Y. Etiologic link between sarcoidosis and Propionibacterium acnes. Respir Investig. 2013;51:56–68. https://doi.org/10.1016/j.resinv.2013.01.001.

    Article  PubMed  Google Scholar 

  12. Eishi Y, Etiologic aspect of sarcoidosis as an allergic endogenous infection caused by propionibacterium acnes, Biomed Res Int 2013 (2013). doi:https://doi.org/10.1155/2013/935289.

  13. Furusawa H, Suzuki Y, Miyazaki Y. Th1 and Th17 immune responses to viable Propionibacterium acnes in patients with sarcoidosis. Respir Investig. 2012;50:104–9. https://doi.org/10.1016/j.resinv.2012.07.001.

    Article  PubMed  Google Scholar 

  14. Ebe Y, Ikushima S, Yamaguchi T, Kohno K, Azuma A, Sato K, et al. Proliferative response of peripheral blood mononuclear cells and levels of antibody to recombinant protein from Propionibacterium acnes DNA expression library in Japanese patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2000;17:256–65.

  15. Yorozu P, Furukawa A, Uchida K, Akashi T, Kakegawa T, Ogawa T, et al. Propionibacterium acnes catalase induces increased Th1 immune response in sarcoidosis patients. Respir Investig. 2015;53:161–9. https://doi.org/10.1016/j.resinv.2015.02.005.

    Article  PubMed  Google Scholar 

  16. Srinivasa Rao PS, Yamada Y, Leung KY. A major catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda. Microbiology. 2003;149:2635–44. https://doi.org/10.1099/mic.0.26478-0.

    Article  CAS  PubMed  Google Scholar 

  17. Ishige I, Eishi Y, Takemura T, Kobayashi I, Nakata K, Tanaka I, et al. Propionibacterium acnes is the most common bacterium commensal in peripheral lung tissue and mediastinal lymph nodes from subjects without sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2005;22:33–42.

  18. Furukawa A, Uchida K, Ishige Y, Ishige I, Kobayashi I, Takemura T, et al. Characterization of Propionibacterium acnes isolates from sarcoid and non-sarcoid tissues with special reference to cell invasiveness, serotype, and trigger factor gene polymorphism. Microb Pathog. 2009;46:80–7. https://doi.org/10.1016/j.micpath.2008.10.013.

    Article  CAS  PubMed  Google Scholar 

  19. Minegishi K, Watanabe T, Furukawa A, Uchida K, Suzuki Y, Akashi T, et al. Genetic profiles of Propionibacterium acnes and identification of a unique transposon with novel insertion sequences in sarcoid and non-sarcoid isolates. Sci Rep. 2015;5:9832. https://doi.org/10.1038/srep09832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Minegishi K, Aikawa C, Furukawa A, Watanabe T, Nakano T, Ogura Y, et al. Complete genome sequence of a Propionibacterium acnes isolate from a sarcoidosis patient. Genome Announc. 2013;1:e00016-12. https://doi.org/10.1128/genomeA.00016-12.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Harlow EL, Lane D. Antibodies: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 1988. https://doi.org/10.1016/0968-0004(89)90307-1.

    Book  Google Scholar 

  22. Rajakaruna GA, Negi M, Uc K, Sekine M, Furukawa A. Localization and density of Porphyromonas gingivalis and Tannerella forsythia in gingival and subgingival granulation tissues affected by chronic or aggressive periodontitis, (2018) 1–13. doi:https://doi.org/10.1038/s41598-018-27766-7.

  23. Suzuki Y, Uchida K, Takemura T, Sekine M, Tamura T, Furukawa A, et al. Propionibacterium acnes-derived insoluble immune complexes in sinus macrophages of lymph nodes affected by sarcoidosis. PLoS One. 2018;13:1–23. https://doi.org/10.1371/journal.pone.0192408.

    Article  CAS  Google Scholar 

  24. Dréno B, Pécastaings S, Corvec S, Veraldi S, Khammari A, Roques C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol. 2018;32(Suppl 2):5–14. https://doi.org/10.1111/jdv.15043.

    Article  PubMed  Google Scholar 

  25. Sowmiya M, Malathi J, Swarnali S, Priya J, Therese K, Madhavan H. A study on the characterization of Propionibacterium acnes isolated from ocular clinical specimens. Indian J Med Res. 2015;142:438. https://doi.org/10.4103/0971-5916.169209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holland C, Mak TN, Zimny-Arndt U, Schmid M, Meyer TF, Jungblut PR, Bruggemann H. Proteomic identification of secreted proteins of Propionibacterium acnes, BMC Microbiol 10 (2010). doi:Artn 230\rDoi https://doi.org/10.1186/1471-2180-10-230.

  27. Prapagdee B, Eiamphungporn W, Saenkham P. Analysis of growth phase regulated KatA and CatE and their physiological roles in determining hydrogen peroxide resistance in Agrobacterium tumefaciens, 237 (2004) 219–226. doi:https://doi.org/10.1016/j.femsle.2004.06.035.

  28. Eshghi A, Lourdault K, Murray GL, Bartpho T, Sermswan RW, Picardeau M, et al. Leptospira interrogans catalase is required for resistance to H2O2 and for virulence. Infect Immun. 2012;80:3892–9. https://doi.org/10.1128/IAI.00466-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ng VH, Cox JS, Sousa AO, MacMicking JD, McKinney JD. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol. 2004;52:1291–302. https://doi.org/10.1111/j.1365-2958.2004.04078.x.

    Article  CAS  PubMed  Google Scholar 

  30. Elkins JG, Hassett DJ, Stewart PS, Schweizer HP, McDermott TR. Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Appl Environ Microbiol. 1999;65:4594–600 http://aem.asm.org/content/65/10/4594%5Cn http://aem.asm.org/content/65/10/4594.full.pdf.

  31. Howell ML, Alsabbagh E, Ma JF, Ochsner UA, Klotz MG, Beveridge TJ, et al. AnkB, a periplasmic ankyrin-like protein in Pseudomonas aeruginosa, is required for optimal catalase B (KatB) activity and resistance to hydrogen peroxide. J Bacteriol. 2000;182:4545–56 http://www.ncbi.nlm.nih.gov/pubmed/10913088.

  32. Das D, Bishayi B. Staphylococcal catalase protects intracellularly survived bacteria by destroying H2O2 produced by the murine peritoneal macrophages. Microb Pathog. 2009;47:57–67. https://doi.org/10.1016/j.micpath.2009.04.012.

    Article  CAS  PubMed  Google Scholar 

  33. Tsai H-H, Lee W-R, Wang P-H, Cheng K-T, Chen Y-C, Shen S-C. Propionibacterium acnes-induced iNOS and COX-2 protein expression via ROS-dependent NF-κB and AP-1 activation in macrophages. J Dermatol Sci. 2013;69:122–31. https://doi.org/10.1016/j.jdermsci.2012.10.009.

    Article  CAS  PubMed  Google Scholar 

  34. Ichise N, Hirota K, Ichihashi D, Nodasaka Y, Morita N, Okuyama H, et al. H2O2 tolerance of Vibrio rumoiensis S-1(T) is attributable to the cellular catalase activity. J Biosci Bioeng. 2008;106:39–45. https://doi.org/10.1263/jbb.106.39.

    Article  CAS  PubMed  Google Scholar 

  35. Hanaoka Y, Takebe F, Nodasaka Y, Hara I, Matsuyama H, Yumoto I. Growth-dependent catalase localization in Exiguobacterium oxidotolerans T-2-2T reflected by catalase activity of cells. PLoS One. 2013;8:e76862. https://doi.org/10.1371/journal.pone.0076862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carr I. Sarcoid macrophage giant cells. Ultrastructure and lysozyme content. Virchows Arch B Cell Pathol Incl Mol Pathol. 1980;32:147–55.

    Article  CAS  PubMed  Google Scholar 

  37. Hoffmann A, Bukau B, Kramer G. Structure and function of the molecular chaperone Trigger Factor. Biochim Biophys Acta. 2010;1803:650–61. https://doi.org/10.1016/j.bbamcr.2010.01.017.

  38. Yuan Y, Crane DD, Iii CEB, Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial α-crystallin homolog, 178 (1996) 4484–4492.

Download references

Acknowledgments

We gratefully acknowledge Dr. Y. Hara and Dr. T. Suzuki for their advice regarding the study design. We thank Ms. Y. Suzuki, Ms. M. Yoshizaki, and Ms. M. Sakaguchi for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinobu Eishi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, K., Uchida, K., Furukawa, A. et al. Catalase expression of Propionibacterium acnes may contribute to intracellular persistence of the bacterium in sinus macrophages of lymph nodes affected by sarcoidosis. Immunol Res 67, 182–193 (2019). https://doi.org/10.1007/s12026-019-09077-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-019-09077-9

Keywords

Navigation