Skip to main content

Advertisement

Log in

Effects of simvastatin on the function of splenic CD4+ and CD8+ T cells in sepsis mice

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Simvastatin may be beneficial for treating sepsis due to its immune-regulating properties, although the mechanisms remain elusive. Herein, we hypothesized simvastatin may attenuate T cell dysfunction induced by sepsis. To test this hypothesis, we used a model based on cecal ligation and puncture (CLP) to induce sepsis in mice. Male C57BL/6 mice were pre-treated with simvastatin (0.2 μg/g of body weight) before CLP. The expression of B and T lymphocyte attenuator (BTLA) on splenic CD4+ T cells and T cell apoptosis, CD4+ and CD8+ T cells were quantified by flow cytometry. Immunohistochemical staining was performed to evaluate the loss of immune effector cells. Formation of TNF-α and interleukin 10 (IL-10) in the spleen and plasma levels of presepsin, IL-1β, and IL-6 were determined using enzyme-linked immunosorbent assay. Simvastatin markedly inhibited the reduction in cytokine secretion from lipopolysaccharide (LPS)-stimulated splenocytes. Simvastatin-treated mice had significantly decreased the percentages of negative costimulatory receptor BTLA on CD4 T cell expression. Simvastatin markedly reduced T cell apoptosis through downregulating the Fas/FasL expression and decrease the percentage of caspase-3 activity in spleen tissue. There was significantly less depletion of splenic CD4+ and CD8+ T cells in simvastatin-treated mice. Simvastatin reduced plasma levels of presepsin, IL-1β, and IL-6. Simvastatin can be a powerful regulator of immune function under sepsis conditions by improving T cell function in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–51.

    Article  PubMed  CAS  Google Scholar 

  2. Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8:776–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Weber GF, Swirski FK. Immunopathogenesis of abdominal sepsis. Langenbecks Arch Surg. 2014;399:1–9.

    Article  PubMed  Google Scholar 

  4. Björkhem-Bergman L, Bergman P, Andersson J, Lindh JD. Statin treatment and mortality in bacterial infections—a systematic review and meta-analysis. PLoS One. 2010;19. doi:https://doi.org/10.1371/journal.pone.0010702.

  5. Zhang S, Rahman M, Zhang S, Qi Z, Thorlacius H. Simvastatin antagonizes CD40L secretion, CXC chemokine formation, and pulmonary infiltration of neutrophils in abdominal sepsis. J Leukoc Biol. 2011;89:735–42.

    Article  PubMed  CAS  Google Scholar 

  6. Beffa DC, Fischman AJ, Fagan SP, Hamrahi VF, Paul KW, Kaneki M, et al. Simvastatin treatment improves survival in a murine model of burn Sepsis: role of interleukin 6. Burns. 2011;37:222–6.

    Article  PubMed  Google Scholar 

  7. Burns EM, Smelser LK, Then JE, Stankiewicz TE, Kushdilian M, McDowell SA, et al. Short term statin treatment improves survival and differentially regulates Macrophagemediated responses to Staphylococcus aureus. Curr Pharm Biotechnol. 2013;14:233–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Terblanche M, Almog Y, Rosenson RS, Smith TS, Hackam DG. Statins and sepsis: multiple modifications at multiple levels. Lancet Infect Dis. 2007;7:358–68.

    Article  PubMed  CAS  Google Scholar 

  9. Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4:31–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hotchkiss RS, Opal S. Immunotherapy for sepsis-a new approach against an ancient foe. N Engl J Med. 2010;363:87–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Huang X, Venet F, Wang YL, Lepapeb A, Yuan Z, Chen Y, et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci U S A. 2009;106:6303–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sinistro A, Almerighi C, Ciaprini C, Natoli S, Sussarello E, Di Fino S, et al. Down-regulation of CD40 ligand response inmonocytes from sepsis patients. Clin Vaccine Immunol. 2008;15:1851–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chang K, Svabek C, Vazquez-Guillamet C, Sato B, Rasche D, Wilson S, et al. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Critical Care. 2014;18:R3. https://doi.org/10.1186/cc13176.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Felmet KA, Hall MW, Clark RS, Jaffe R, Carcillo JA. Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. J Immunol. 2005;174:3765–72.

    Article  PubMed  CAS  Google Scholar 

  15. Martignoni A, Tschöp J, Goetzman HS, Choi LG, Reid MD, Johannigman JA, et al. CD4-expressing cells are early mediators of the innate immune system during sepsis. Shock. 2008;29:591–7.

    PubMed  PubMed Central  Google Scholar 

  16. Evan G, Littlewood T. A matter of life and cell death. Science. 1998;281:1317–22.

    Article  PubMed  CAS  Google Scholar 

  17. Scffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, et al. Two CD95 (APO 2 1/Fas) signaling pathways. EMBO J. 1998;17:1675–87.

    Article  Google Scholar 

  18. Ayala A, Chung CS, Xu YX, Evans TA, Redmond KM, Chaudry IH. Increased inducible apoptosis in CD4+T lymphocytes during polymicrobial sepsis is mediated by Fas ligand and not endotoxin. Immunology. 1999;97:45–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Guignant C, Lepape A, Huang X, et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shook patients. Crit Care. 2011;15:R99.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Inoue S, Bo L, Bian J, et al. Dose-dependent effect of anti-CTLA-4 on survival in sepsis. Shock. 2011;36:38–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cai G, Freeman GJ. The CD160, BTLA, LIGHT/HVEM pathway: a bidirectional switch regulating T-cell activation. Immunol Rev. 2009;229(1):244–58.

    Article  PubMed  CAS  Google Scholar 

  22. Murphy TL, Murphy KM. Slow down and survive: enigmatic immunoregulation by BTLA and HVEM. Annu Rev Immunol. 2010;28:389–411.

    Article  PubMed  CAS  Google Scholar 

  23. Uchiyama M, Jin X, Matsuda H, Bashuda H, Imazuru T, Shimokawa T, Yagita H, Niimi M. An agonistic anti-BTLAmAB(3C10) induced generation of IL-10-dependent regulatory CD4+ T cells and prolongation of murine cardiac allograft. Transplantation 2014;97(3):301–309.

  24. Shubin NJ, Chung CS, Heffernan DS, Irwin LR, Monaghan SF, Ayala A. BTLA expression contributes to septic morbidity and mortality by inducing innate inflammatory cell dysfunction. J Leukoc Biol. 2012;92:593–603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Adler G, Steeg C, Pfeffer K, Murphy TL, Murphy KM, Langhorne J, et al. B and T lymphocyte attenuator restricts the protective immune response against experimental malaria. J Immunol. 2011;187:5310–9.

    Article  PubMed  CAS  Google Scholar 

  26. Shubin NJ, Monaghan SF, Heffernan DS, Chung CS, Ayala A. A and T lymphocyte attenuator expression on CD4+ T cells associates with sepsis and subsequent infection in ICU patients. Crit Care. 2013;17(6):R276.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yaegashi Y, Shirakawa K, Sato N, Suzuki Y, Kojika M, Imai S, et al. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J Infect Chemother. 2005;11:234–8.

    Article  PubMed  CAS  Google Scholar 

  28. Nakamura M, Takeuchi T, Naito K, Shirakawa K, Hosaka Y, Yamasak F, et al. Early elevation of plasma soluble CD14 subtype, a novel biomarker for sepsis, in a rabbit cecal ligation and puncture model. Crit Care. 2008;12(Suppl 2):P194.

    Article  PubMed Central  Google Scholar 

  29. Carpio R, Zapata J, Spanuth E, Hess G. Utility of presepsin (sCD14-ST) as a diagnostic and prognostic marker of sepsis in the emergency department. Clin Chim Acta. 2015;450:169–75.

    Article  PubMed  CAS  Google Scholar 

  30. Gil M, Kim YK, Hong SB, Lee KJ. Naringin decreases TNF-α and HMGB1 release from LPS-stimulated macrophages and improves survival in a CLP-induced sepsis mice. PLoS One. 2016;11:e0164186. https://doi.org/10.1371/journal.pone.0164186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813:878–88.

    Article  PubMed  CAS  Google Scholar 

  32. Jones SA, Richards PJ, Scheller J, Rose-John S. IL-6 transsignaling: the in vivo consequences. J Interf Cytokine Res. 2005;25:241–53.

    Article  CAS  Google Scholar 

  33. Chaudhry H, Zhou J, Zhong Y, Ali MM, Mcguire F, Nagarkatti PS, et al. Role of cytokines as a double-edged sword in sepsis. In Vivo. 2013;27:669–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Adib-Conquy M, Cavaillon JM. Host inflammatory and anti-inflammatory response during sepsis. Pathol Biol (Paris). 2012;60:306–13.

    Article  CAS  Google Scholar 

  35. Rosch JW, Boyd AR, Hinojosa E, Pestina T, Hu Y, Persons DA, et al. Statins protect against fulminant pneumococcal infection and cytolysin toxicity in a mouse model of sickle cell disease. J Clin Invest. 2010;120:627–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhang S, Luo L, Wang Y, Rahman M, Lepsenyi M, Syk I, et al. Simvastatin protects against T cell immune dysfunction in abdominal sepsis. Shock. 2012;38:524–31.

    Article  PubMed  CAS  Google Scholar 

  37. Bergman M, Salman H, Djaldetti M, Bessler H. Statins as modulators of colon cancer cells induced cytokine secretion by human PBMC. Vasc Pharmacol. 2011;54:88–92.

    Article  CAS  Google Scholar 

  38. Tomino A, Tsuda M, Aoki R, Kajita Y, Hashiba M, Terajima T, et al. Increased PD-1 expression and altered T cell repertoire diversity predict mortality in patients with septic shock: a preliminary study. PLoS One. 2017;12:e0169653.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all the people who helped us to carry out this work.

Funding

This work was funded in part by Shenyang Science and Technology Project of China (Grant No.17-203-958).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, B., Wang, X., Yang, W. et al. Effects of simvastatin on the function of splenic CD4+ and CD8+ T cells in sepsis mice. Immunol Res 66, 355–366 (2018). https://doi.org/10.1007/s12026-018-8994-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-018-8994-7

Keywords

Navigation