Advertisement

Immunologic Research

, Volume 65, Issue 2, pp 432–437 | Cite as

The microbiome and systemic lupus erythematosus

  • Nurit Katz-Agranov
  • Gisele Zandman-GoddardEmail author
Novel Aspects in Lupus, 2017

Abstract

The microbiota, which is comprised of the collective of all microbes inhabiting the gut and its effect on the human host in which it resides, has become a growing field of interest. Various parameters of health and disease have been found to be associated with the variation in the human gut microbiome. In recent years, many studies have demonstrated an important role of gut microbes in the development of various illnesses including autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, and multiple sclerosis. Although the mechanism of the disease involves both genetic and environmental factors, lupus has been found to be affected by the composition of the microbes lining the intestines. Several recent studies have suggested that alterations of the gut microbial composition may be correlated with SLE disease manifestations, while the exact roles of either symbiotic or pathogenic microbes in this disease have yet to be explored. Elucidation of the roles of gut microbes in SLE will shed light on how this autoimmune disorder develops and provide opportunities for improved biomarkers of the disease and the potential to probe new therapies. This new knowledge, along with that enabling alteration in composition of the gut microbiome, via diet modification, antibiotic, and probiotics, may bring forward a new era in the future of lupus treatment.

Keywords

SLE Lupus Microbiota Gut Dysbiosis 

References

  1. 1.
    Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 2005;307:1955–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–36.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469:543.CrossRefPubMedGoogle Scholar
  5. 5.
    Hooper LV, Midtvedt T, Gordon JI. How host–microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr. 2002;22:283–307.CrossRefPubMedGoogle Scholar
  6. 6.
    Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: ametagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14.Google Scholar
  8. 8.
    Sommer F, Backhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol. 2013;11:227–38.CrossRefPubMedGoogle Scholar
  9. 9.
    Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol. 2013;14:676–84.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Belkaid Y, Naik S. Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol. 2013;14:646–53.CrossRefPubMedGoogle Scholar
  11. 11.
    Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489–93.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ahern PP, Faith JJ, Gordon JI. Mining the human gut microbiota for effector strains that shape the immune system. Immunity. 2014;40:815–23.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–10.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–41.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–20.CrossRefPubMedGoogle Scholar
  16. 16.
    Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150:470–80.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84.PubMedGoogle Scholar
  18. 18.
    Sharon I, Morowitz MJ, Thomas BC, Costello EK, Relman DA, Banfield JF. Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res. 2013;23:111–20.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, et al. Diversity of bifidobacteria within the infant gut microbiota. PLoS One. 2012;7:e36957.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–6.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Holmes E, Kinross J, Gibson GR, Burcelin R, Jia W, Pettersson S, et al. Therapeutic modulation of microbiota-host metabolic interactions. Sci Transl Med. 2012;4:137rv6.CrossRefPubMedGoogle Scholar
  23. 23.
    Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10:735–42.CrossRefPubMedGoogle Scholar
  24. 24.
    PrabhuDas M, Adkins B, Gans H, King C, Levy O, Ramilo O, et al. Challenges in infant immunity: implications for responses to infection and vaccines. Nat Immunol. 2011;12:189–94.CrossRefPubMedGoogle Scholar
  25. 25.
    Siegrist CA. Neonatal and early life vaccinology. Vaccine. 2001;19:3331–46.CrossRefPubMedGoogle Scholar
  26. 26.
    Marcobal A, Sonnenburg JL. Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect. 2012;18(Suppl 4):12–5.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010;58:5334–40.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bauer H, Horowitz RE, Levenson SM, Popper H. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am J Pathol. 1963;42:471–83.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001;291:881–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Taneja V. Arthritis susceptibility and the gut microbiome. FEBS Lett. 2014;588:4244–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Segata N, Boernigen D, Tickle TL, Morgan XC, Garrett WS, Huttenhower C. Computational meta’omics for microbial community studies. Mol Syst Biol. 2013;9:666.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Moran CP, Shanahan F. Gut microbiota and obesity: role in etiology and potential therapeutic target. Best Pract Res Clin Gastroenterol. 2014;28:585–97.CrossRefPubMedGoogle Scholar
  34. 34.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.CrossRefPubMedGoogle Scholar
  35. 35.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.CrossRefPubMedGoogle Scholar
  36. 36.
    Bekkering P, Jafri I, van Overveld FJ, Rijkers GT. The intricate association between gut microbiota and development of type 1, type 2 and type 3 diabetes. Expert Rev Clin Immunol. 2013;9:1031–41.CrossRefPubMedGoogle Scholar
  37. 37.
    Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39:400–12.CrossRefPubMedGoogle Scholar
  38. 38.
    Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3:4–14.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sorini C, Falcone M. Shaping the (auto)immune response in the gut: the role of intestinal immune regulation in the prevention of type 1 diabetes. Am J Clin Exp Immunol. 2013;2:156–71.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339:1084–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Longman RS, Yang Y, Diehl GE, Kim SV, Littman DR. Microbiota: host interactions in mucosal homeostasis and systemic autoimmunity. Cold Spring Harb Symp Quant Biol. 2013;78:193–201.CrossRefPubMedGoogle Scholar
  42. 42.
    Chervonsky AV. Microbiota and autoimmunity. Cold Spring Harb Perspect Biol. 2013;5:a007294.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sherman MP, Zaghouani H, Niklas V. Gut microbiota, the immune system, and diet influence the neonatal gut-brain axis. Pediatr Res. 2015;77:127–35.CrossRefPubMedGoogle Scholar
  44. 44.
    Gonzalez A, Stombaugh J, Lozupone C, Turnbaugh PJ, Gordon JI, Knight R. The mind-body-microbial continuum. Dialogues Clin Neurosci. 2011;13:55–62.PubMedPubMedCentralGoogle Scholar
  45. 45.
    McLean MH, Dieguez Jr D, Miller LM, Young HA. Does the microbiota play a role in the pathogenesis of autoimmune diseases? Gut. 2015;64:332–41.CrossRefPubMedGoogle Scholar
  46. 46.
    Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012;9:599–608.CrossRefPubMedGoogle Scholar
  47. 47.
    Berry D, Reinisch W. Intestinal microbiota: a source of novel biomarkers in inflammatory bowel diseases? Best Pract Res Clin Gastroenterol. 2013;27:47–58.CrossRefPubMedGoogle Scholar
  48. 48.
    Man SM, Kaakoush NO, Mitchell HM. The role of bacteria and pattern-recognition receptors in Crohn’s disease. Nat Rev Gastroenterol Hepatol. 2011;8:152–68.CrossRefPubMedGoogle Scholar
  49. 49.
    Tlaskalová-Hogenová H, Stěpánková R, Kozáková H, Hudcovic T, Vannucci L, Tucková L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8:110–20.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang H, Liao X, Sparks JB, Luo XM. Dynamics of gut microbiota in autoimmune lupus. Appl Environ Microbiol. 2014;80:7551–60.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, de Roos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Nature. 2013;504:446–50.CrossRefPubMedGoogle Scholar
  53. 53.
    Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Immunity. 2014;40:128–39.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Rojo D, Hevia A, Bargiela R, López P, Cuervo A, González S, et al. Ranking the impact of human health disorders on gut metabolism: systemic lupus erythematosus and obesity as study cases. Sci Rep. 2015;5:8310.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hevia A, Milani C, López P, Cuervo A, Arboleya S, Duranti S, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio. 2014;5:e01548–14.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lopez P, de Paz B, Rodríguez-Carrio J, Hevia A, Sánchez B, Margolles A, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. 2016;6:24072.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology. 2009;136:2015–31.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis. 2014;35:249–55.CrossRefPubMedGoogle Scholar
  59. 59.
    Elliott DE, Summers RW, Weinstock JV. Helminths as governors of immune-mediated inflammation. Int J Parasitol. 2007;37:457–64.CrossRefPubMedGoogle Scholar
  60. 60.
    Elliott DE, Weinstock JV. Helminth-host immunological interactions: prevention and control of immune-mediated diseases. Ann N Y Acad Sci. 2011;1247:83–96.CrossRefGoogle Scholar
  61. 61.
    Bashi T, Bizzaro G, Ben-Ami Shor D, Blank M, Shoenfeld Y. The mechanisms behind helminth’s immunomodulation in autoimmunity. Autoimmunity Rev. 2015;14:98–104.CrossRefGoogle Scholar
  62. 62.
    Bashi T, Blank M, Ben-Ami Shor D, Fridkin M, Versini M, Gendelman O, Volkov A, Barshak I, Shoenfeld Y. Successful modulation of murine lupus nephritis with tuftsin-phosphorylcholine. J Autoimmun. 2015;59:1–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Internal MedicineThe University of Texas Houston, Health Science CenterHoustonUSA
  2. 2.Department of Medicine CWolfson Medical CenterHolonIsrael
  3. 3.Sackler Faculty of MedicineTel-Aviv UniversityTel AvivIsrael

Personalised recommendations