Skip to main content

Advertisement

Log in

MBL2 genetic polymorphisms and HIV-1 mother-to-child transmission in Zambia

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Since antiretroviral drugs have been introduced to prevent mother-to-child transmission, the risk of HIV-1 infection in infants has decreased considerably worldwide. Nevertheless, many factors are involved in viral transmission and host susceptibility to infection. The immune system and its components, including mannose binding protein C (encoding by MBL2 gene), are already known to play an important role in this scenario. In the present study, 313 children and 98 of their mothers from Zambia were genotyped for the MBL2 promoter HL (rs11003125) and XY (rs7096206) polymorphisms and exon 1 D (rs5030737, at codon 52) B (rs1800450, at codon 54) and C (rs1800451, at codon 57) polymorphisms in order to investigate the potential role of these genetic variants in HIV-1 mother-to-child transmission. No statistical significant association was observed comparing transmitter and non-transmitter mothers and also confronting HIV-positive and HIV-negative children. The findings of the current study obtained on mother and children from Zambia evidence lack of association between MBL2 functional polymorphisms and HIV-1 mother-to-child transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO. HIV/AIDS; Data and statistics. 2014. http://www.who.int/hiv/.

  2. UNAIDS. Global AIDS response progress reporting 2015. http://www.unaids.org. 2015.

  3. European Collaborative Study. Risk factors for mother-to-child transmission of HIV-1. Lancet. 1992;339(8800):1007–12.

    Article  Google Scholar 

  4. Garcia PM, Kalish LA, Pitt J, Minkoff H, Quinn TC, Burchett SK, et al. Maternal levels of plasma human immunodeficiency virus type 1 RNA and the risk of perinatal transmission. Women and Infants Transmission Study Group. N Engl J Med. 1999;341(6):394–402.

    Article  CAS  PubMed  Google Scholar 

  5. Dunn DT, Newell ML, Ades AE, Peckham CS. Risk of human immunodeficiency virus type 1 transmission through breastfeeding. Lancet. 1992;340(8819):585–8.

    Article  CAS  PubMed  Google Scholar 

  6. Mofenson LM. Mother–child HIV-1 transmission: timing and determinants. Obstet Gynecol Clin N Am. 1997;24(4):759–84.

    Article  CAS  Google Scholar 

  7. Pareja E, Tobes R, Martin J, Nieto A. The tetramer model: a new view of class II MHC molecules in antigenic presentation to T cells. Tissue Antigens. 1997;50(5):421–8.

    Article  CAS  PubMed  Google Scholar 

  8. Murphy PM. Chemokine receptors: structure, function and role in microbial pathogenesis. Cytokine Growth Factor Rev. 1996;7(1):47–64.

    Article  CAS  PubMed  Google Scholar 

  9. Chatterjee K. Host genetic factors in susceptibility to HIV-1 infection and progression to AIDS. J Genet. 2010;89(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  10. Petersen SV, Thiel S, Jensenius JC. The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol. 2001;38(2–3):133–49.

    Article  CAS  PubMed  Google Scholar 

  11. Thiel S, Vorup-Jensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, et al. A second serine protease associated with mannan-binding lectin that activates complement. Nature. 1997;386(6624):506–10.

    Article  CAS  PubMed  Google Scholar 

  12. Ji X, Gewurz H, Spear GT. Mannose binding lectin (MBL) and HIV. Mol Immunol. 2005;42(2):145–52.

    Article  CAS  PubMed  Google Scholar 

  13. da Silva GK, Guimaraes R, Mattevi VS, Lazzaretti RK, Sprinz E, Kuhmmer R, et al. The role of mannose-binding lectin gene polymorphisms in susceptibility to HIV-1 infection in Southern Brazilian patients. AIDS. 2011;25(4):411–8.

    Article  PubMed  Google Scholar 

  14. Garred P, Madsen HO, Balslev U, Hofmann B, Pedersen C, Gerstoft J, et al. Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin. Lancet. 1997;349(9047):236–40.

    Article  CAS  PubMed  Google Scholar 

  15. Garred P, Richter C, Andersen AB, Madsen HO, Mtoni I, Svejgaard A, et al. Mannan-binding lectin in the sub-Saharan HIV and tuberculosis epidemics. Scand J Immunol. 1997;46(2):204–8.

    Article  CAS  PubMed  Google Scholar 

  16. Nielsen SL, Andersen PL, Koch C, Jensenius JC, Thiel S. The level of the serum opsonin, mannan-binding protein in HIV-1 antibody-positive patients. Clin Exp Immunol. 1995;100(2):219–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prohaszka Z, Thiel S, Ujhelyi E, Szlavik J, Banhegyi D, Fust G. Mannan-binding lectin serum concentrations in HIV-infected patients are influenced by the stage of disease. Immunol Lett. 1997;58(3):171–5.

    Article  CAS  PubMed  Google Scholar 

  18. Sheng A, Lan J, Wu H, Lu J, Wang Y, Chu Q, et al. A clinical case-control study on the association between mannose-binding lectin and susceptibility to HIV-1 infection among northern Han Chinese population. Int J Immunogenet. 2010;37(6):445–54.

    Article  CAS  PubMed  Google Scholar 

  19. Tan Y, Liu L, Luo P, Wang A, Jia T, Shen X, et al. Association between mannose-binding lectin and HIV infection and progression in a Chinese population. Mol Immunol. 2009;47(2–3):632–8.

    Article  CAS  PubMed  Google Scholar 

  20. Boniotto M, Braida L, Pirulli D, Arraes L, Amoroso A, Crovella S. MBL2 polymorphisms are involved in HIV-1 infection in Brazilian perinatally infected children. AIDS. 2003;17(5):779–80.

    Article  PubMed  Google Scholar 

  21. Boniotto M, Crovella S, Pirulli D, Scarlatti G, Spano A, Vatta L, et al. Polymorphisms in the MBL2 promoter correlated with risk of HIV-1 vertical transmission and AIDS progression. Genes Immun. 2000;1(5):346–8.

    Article  CAS  PubMed  Google Scholar 

  22. Crovella S, Bernardon M, Braida L, Boniotto M, Guaschino S, Ferrazzi E, et al. Italian multicentric pilot study on MBL2 genetic polymorphisms in HIV positive pregnant women and their children. J Matern Fetal Neonatal Med. 2005;17(4):253–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kuhn L, Coutsoudis A, Trabattoni D, Archary D, Rossi T, Segat L, et al. Synergy between mannose-binding lectin gene polymorphisms and supplementation with vitamin A influences susceptibility to HIV infection in infants born to HIV-positive mothers. Am J Clin Nutr. 2006;84(3):610–5.

    CAS  PubMed  Google Scholar 

  24. Lian YC, Della-Negra M, Rutz R, Ferriani V, de Moraes Vasconcelos D, da Silva Duarte AJ, et al. Immunological analysis in paediatric HIV patients at different stages of the disease. Scand J Immunol. 2004;60(6):615–24.

    Article  CAS  PubMed  Google Scholar 

  25. Mangano A, Rocco C, Marino SM, Mecikovsky D, Genre F, Aulicino P, et al. Detrimental effects of mannose-binding lectin (MBL2) promoter genotype XA/XA on HIV-1 vertical transmission and AIDS progression. J Infect Dis. 2008;198(5):694–700.

    Article  CAS  PubMed  Google Scholar 

  26. Catano G, Agan BK, Kulkarni H, Telles V, Marconi VC, Dolan MJ, et al. Independent effects of genetic variations in mannose-binding lectin influence the course of HIV disease: the advantage of heterozygosity for coding mutations. J Infect Dis. 2008;198(1):72–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Malik S, Arias M, Di Flumeri C, Garcia LF, Schurr E. Absence of association between mannose-binding lectin gene polymorphisms and HIV-1 infection in a Colombian population. Immunogenetics. 2003;55(1):49–52.

    CAS  PubMed  Google Scholar 

  28. McBride MO, Fischer PB, Sumiya M, McClure MO, Turner MW, Skinner CJ, et al. Mannose-binding protein in HIV-seropositive patients does not contribute to disease progression or bacterial infections. Int J STD AIDS. 1998;9(11):683–8.

    Article  CAS  PubMed  Google Scholar 

  29. Senaldi G, Davies ET, Mahalingam M, Lu J, Pozniak A, Peakman M, et al. Circulating levels of mannose binding protein in human immunodeficiency virus infection. J Infect. 1995;31(2):145–8.

    Article  CAS  PubMed  Google Scholar 

  30. Turner MW, Hamvas RM. Mannose-binding lectin: structure, function, genetics and disease associations. Rev Immunogenet. 2000;2(3):305–22.

    CAS  PubMed  Google Scholar 

  31. Sumiya M, Super M, Tabona P, Levinsky RJ, Arai T, Turner MW, et al. Molecular basis of opsonic defect in immunodeficient children. Lancet. 1991;337(8757):1569–70.

    Article  CAS  PubMed  Google Scholar 

  32. Lipscombe RJ, Sumiya M, Hill AV, Lau YL, Levinsky RJ, Summerfield JA, et al. High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Hum Mol Genet. 1992;1(9):709–15.

    Article  CAS  PubMed  Google Scholar 

  33. Madsen HO, Garred P, Kurtzhals JA, Lamm LU, Ryder LP, Thiel S, et al. A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics. 1994;40(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  34. Wallis R. Dominant effects of mutations in the collagenous domain of mannose-binding protein. J Immunol. 2002;168(9):4553–8.

    Article  CAS  PubMed  Google Scholar 

  35. Butler GS, Sim D, Tam E, Devine D, Overall CM. Mannose-binding lectin (MBL) mutants are susceptible to matrix metalloproteinase proteolysis: potential role in human MBL deficiency. J Biol Chem. 2002;277(20):17511–9.

    Article  CAS  PubMed  Google Scholar 

  36. Madsen HO, Garred P, Thiel S, Kurtzhals JA, Lamm LU, Ryder LP, et al. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol. 1995;155(6):3013–20.

    CAS  PubMed  Google Scholar 

  37. Boldt AB, Petzl-Erler ML. A new strategy for mannose-binding lectin gene haplotyping. Hum Mutat. 2002;19(3):296–306.

    Article  PubMed  Google Scholar 

  38. Segat L, Zupin L, Kim HY, Catamo E, Thea DM, Kankasa C, et al. HLA-G 14 bp deletion/insertion polymorphism and mother-to-child transmission of HIV. Tissue Antigens. 2014;83(3):161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thea DM, Vwalika C, Kasonde P, Kankasa C, Sinkala M, Semrau K, et al. Issues in the design of a clinical trial with a behavioral intervention—the Zambia exclusive breast-feeding study. Control Clin Trials. 2004;25(4):353–65.

    Article  PubMed  Google Scholar 

  40. Garred P. Mannose-binding lectin genetics: from A to Z. Biochem Soc Trans. 2008;36(Pt 6):1461–6.

    Article  CAS  PubMed  Google Scholar 

  41. R core Team. R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. 2015.

  42. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.

    Article  PubMed  Google Scholar 

  43. Bouwman LH, Roep BO, Roos A. Mannose-binding lectin: clinical implications for infection, transplantation, and autoimmunity. Hum Immunol. 2006;67(4–5):247–56.

    Article  CAS  PubMed  Google Scholar 

  44. Ezekowitz RA, Kuhlman M, Groopman JE, Byrn RA. A human serum mannose-binding protein inhibits in vitro infection by the human immunodeficiency virus. J Exp Med. 1989;169(1):185–96.

    Article  CAS  PubMed  Google Scholar 

  45. Mhandire K, Pharo G, Kandawasvika GQ, Duri K, Swart M, Stray-Pedersen B, et al. How does mother-to-child transmission of HIV differ among African populations? Lessons from MBL2 genetic variation in Zimbabweans. OMICS. 2014;18(7):454–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arraes LC, de Souza PR, Bruneska D, Castelo Filho A, Cavada Bde S, de Lima Filho JL, et al. A cost-effective melting temperature assay for the detection of single-nucleotide polymorphism in the MBL2 gene of HIV-1-infected children. Braz J Med Biol Res. 2006;39(6):719–23.

    Article  CAS  PubMed  Google Scholar 

  47. Pastinen T, Liitsola K, Niini P, Salminen M, Syvanen AC. Contribution of the CCR5 and MBL genes to susceptibility to HIV type 1 infection in the Finnish population. AIDS Res Hum Retroviruses. 1998;14(8):695–8.

    Article  CAS  PubMed  Google Scholar 

  48. Li H, Fu WP, Hong ZH. Replication study in Chinese Han population and meta-analysis supports association between the MBL2 gene polymorphism and HIV-1 infection. Infect Genet Evol. 2013;20:163–70.

    Article  CAS  PubMed  Google Scholar 

  49. Garcia-Laorden MI, Pena MJ, Caminero JA, Garcia-Saavedra A, Campos-Herrero MI, Caballero A, et al. Influence of mannose-binding lectin on HIV infection and tuberculosis in a Western-European population. Mol Immunol. 2006;43(14):2143–50.

    Article  CAS  PubMed  Google Scholar 

  50. Amoroso A, Berrino M, Boniotto M, Crovella S, Palomba E, Scarlatti G, et al. Polymorphism at codon 54 of mannose-binding protein gene influences AIDS progression but not HIV infection in exposed children. AIDS. 1999;13(7):863–4.

    Article  CAS  PubMed  Google Scholar 

  51. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.

    Article  Google Scholar 

  52. Turner MW. Mannose-binding lectin (MBL) in health and disease. Immunobiology. 1998;199(2):327–39.

    Article  CAS  PubMed  Google Scholar 

  53. Madsen HO, Satz ML, Hogh B, Svejgaard A, Garred P. Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J Immunol. 1998;161(6):3169–75.

    CAS  PubMed  Google Scholar 

  54. Babovic-Vuksanovic D, Snow K, Ten RM. Mannose-binding lectin (MBL) deficiency. Variant alleles in a midwestern population of the United States. Ann Allergy Asthma Immunol. 1999;82(2):134–8, 141; quiz 142–3.

    Article  CAS  PubMed  Google Scholar 

  55. Garred P, Thiel S, Madsen HO, Ryder LP, Jensenius JC, Svejgaard A. Gene frequency and partial protein characterization of an allelic variant of mannan binding protein associated with low serum concentrations. Clin Exp Immunol. 1992;90(3):517–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mombo LE, Lu CY, Ossari S, Bedjabaga I, Sica L, Krishnamoorthy R, et al. Mannose-binding lectin alleles in sub-Saharan Africans and relation with susceptibility to infections. Genes Immun. 2003;4(5):362–7.

    Article  CAS  PubMed  Google Scholar 

  57. Cohen MS, Hellmann N, Levy JA, DeCock K, Lange J. The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. J Clin Invest. 2008;118(4):1244–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been supported by RC06/11 and RC13/12 grants from IRCCS Burlo Garofolo Trieste (Italy). This study was supported in part by grants from the Eunice Kennedy Shriver, National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) (HD39611, HD40777, HD57617). VP is recipient of fellowship from IRCCS Burlo Garofolo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Zupin.

Ethics declarations

Conflict of interest

The authors have declared no conflicting interests.

Informed consent

All women provided written informed consent for participating in the study.

Ethical standards

All the study experiments and procedures have been performed in accordance with ethical standards of the 1975 Declaration of Helsinki (6th revision, 2008), and the ethical committee of IRCCS Burlo Garofolo approved the study (protocol L-1106, 1 May 2010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zupin, L., Polesello, V., Segat, L. et al. MBL2 genetic polymorphisms and HIV-1 mother-to-child transmission in Zambia. Immunol Res 64, 775–784 (2016). https://doi.org/10.1007/s12026-015-8779-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8779-1

Keywords

Navigation