Skip to main content

Advertisement

Log in

Tumoral NKG2D alters cell cycle of acute myeloid leukemic cells and reduces NK cell-mediated immune surveillance

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The stimulatory natural killer group 2 member D (NKG2D) lymphocyte receptor, initially discovered and expressed mostly on natural killer (NK) cells, T cells and natural killer T cells, can promote tumor immune surveillance. However, with increasing tumor grade, tumors themselves express NKG2D to self-stimulate oncogenic pathways. To confirm that cancer cells themselves express NKG2D, we have now investigated the role of the tumoral NKG2D in NK cell-mediated immune surveillance. Both anti-NKG2D and shRNA to that down-regulated tumoral NKG2D increased the number of cells in G1 phase and S phase, increased the expression of cyclin E–CDK2 and decreased P21. In addition, CD107a, IFN-γ and TNF-α increased when the cells were treated with anti-NKG2D which suggests that blocking tumoral NKG2D could augment tumor surveillance of NK cells. Altogether, tumoral NKG2D stimulates cell propagation and immune escape in acute myeloid leukemia cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lion E, Willemen Y, Berneman ZN, Van Tendeloo VF, Smits EL. Natural killer cell immune escape in acute myeloid leukemia. Leukemia. 2012;26(9):2019–26. doi:10.1038/leu.2012.87.

    Article  CAS  PubMed  Google Scholar 

  2. Park SW, Bae JH, Kim SD, Son YO, Kim JY, Park HJ, et al. Comparison of level of NKG2D Ligands between normal and tumor tissue using multiplex RT-PCR. Cancer Investig. 2007;25(5):299–307. doi:10.1080/07357900701208824.

    Article  CAS  Google Scholar 

  3. Champsaur M, Lanier LL. Effect of NKG2D ligand expression on host immune responses. Immunol Rev. 2010;235:267–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benitez AC, Dai ZP, Mann HH, Reeves RS, Margineantu DH, Gooley TA, et al. Expression, signaling proficiency, and stimulatory function of the NKG2D lymphocyte receptor in human cancer cells. P Natl Acad Sci USA. 2011;108(10):4081–6. doi:10.1073/pnas.1018603108.

    Article  CAS  Google Scholar 

  5. El-Gazzar A, Cai X, Reeves RS, Dai Z, Caballero-Benitez A, McDonald DL, et al. Effects on tumor development and metastatic dissemination by the NKG2D lymphocyte receptor expressed on cancer cells. Oncogene. 2014;33(41):4932–40. doi:10.1038/onc.2013.435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Houchins JP, Yabe T, McSherry C, Bach FH. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med. 1991;173(4):1017–20.

    Article  CAS  PubMed  Google Scholar 

  7. Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science. 1999;285(5428):730–2.

    Article  CAS  PubMed  Google Scholar 

  8. Upshaw JL, Leibson PJ. NKG2D-mediated activation of cytotoxic lymphocytes: unique signaling pathways and distinct functional outcomes. Semin Immunol. 2006;18(3):167–75. doi:10.1016/j.smim.2006.03.001.

    Article  CAS  PubMed  Google Scholar 

  9. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9(5):495–502. doi:10.1038/ni1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eagle RA, Trowsdale J. Promiscuity and the single receptor: NKG2D. Nat Rev Immunol. 2007;7(9):737–44. doi:10.1038/nri2144.

    Article  CAS  PubMed  Google Scholar 

  11. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA. 1999;96(12):6879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cai X, Dai ZP, Reeves RS, Caballero-Benitez A, Duran KL, Delrow JJ, et al. Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS One. 2014. doi:10.1371/journal.pone.0108942.

    Google Scholar 

  13. Weiss-Steider B, Soto-Cruz I, Martinez-Campos CA, Mendoza-Rincon JF. Expression of MICA, MICB and NKG2D in human leukemic myelomonocytic and cervical cancer cells. J Exp Clin Cancer Res CR. 2011;30:37. doi:10.1186/1756-9966-30-37.

    Article  CAS  PubMed  Google Scholar 

  14. Alter G, Malenfant JM, Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods. 2004;294(1–2):15–22. doi:10.1016/j.jim.2004.08.008.

    Article  CAS  PubMed  Google Scholar 

  15. Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity. 2002;17(1):19–29. doi:10.1016/S1074-7613(02)00333-3.

    Article  CAS  PubMed  Google Scholar 

  16. Mistry AR, O’Callaghan CA. Regulation of ligands for the activating receptor NKG2D. Immunology. 2007;121(4):439–47. doi:10.1111/j.1365-2567.2007.02652.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang T, Sentman CL. Cancer Immunotherapy using a bispecific NK receptor fusion protein that engages both T cells and tumor cells. Cancer Res. 2011;71(6):2066–76. doi:10.1158/0008-5472.CAN-10-3200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 2003;3(10):781–90. doi:10.1038/nri1199.

    Article  CAS  PubMed  Google Scholar 

  19. Levkau B, Koyama H, Raines EW, Clurman BE, Herren B, Orth K, et al. Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade. Mol Cell. 1998;1(4):553–63.

    Article  CAS  PubMed  Google Scholar 

  20. Rodriguez R, Meuth M. Chk1 and p21 cooperate to prevent apoptosis during DNA replication fork stress. Mol Biol Cell. 2006;17(1):402–12. doi:10.1091/mbc.E05-07-0594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dolezalova D, Mraz M, Barta T, Plevova K, Vinarsky V, Holubcova Z, et al. MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem Cells. 2012;30(7):1362–72. doi:10.1002/stem.1108.

    Article  CAS  PubMed  Google Scholar 

  22. Wang RP, Jaw JJ, Stutzman NC, Zou ZC, Sun PD. Natural killer cell-produced IFN-gamma and TNF-alpha induce target cell cytolysis through up-regulation of ICAM-1. J Leukoc Biol. 2012;91(2):299–309. doi:10.1189/jlb.0611308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang BH, Liu LZ. PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res. 2009;102:19–65. doi:10.1016/S0065-230X(09)02002-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coudert JD, Held W. The role of the NKG2D receptor for tumor immunity. Semin Cancer Biol. 2006;16(5):333–43. doi:10.1016/j.semcancer.2006.07.008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (NSFC81473125), Specialized Research Fund for the Doctoral Program of Higher Education (20130096110007), Jiangsu Province Qinglan Project (2014) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. We are grateful to Professor Sherie L. Morrison of University of California Los Angeles for her revision on this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Wang or Juan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Mingying Tang and Desmond Omane Acheampong have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Acheampong, D.O., Wang, Y. et al. Tumoral NKG2D alters cell cycle of acute myeloid leukemic cells and reduces NK cell-mediated immune surveillance. Immunol Res 64, 754–764 (2016). https://doi.org/10.1007/s12026-015-8769-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8769-3

Keywords

Navigation