Immunologic Research

, Volume 63, Issue 1–3, pp 26–37 | Cite as

Lupus brain fog: a biologic perspective on cognitive impairment, depression, and fatigue in systemic lupus erythematosus

  • Meggan MackayEmail author


Cognitive disturbances, mood disorders and fatigue are common in SLE patients with substantial adverse effects on function and quality of life. Attribution of these clinical findings to immune-mediated disturbances associated with SLE remains difficult and has compromised research efforts in these areas. Improved understanding of the role of the immune system in neurologic processes essential for cognition including synaptic plasticity, long term potentiation and adult neurogenesis suggests multiple potential mechanisms for altered central nervous system function associated with a chronic inflammatory illness such as SLE. This review will focus on the biology of cognition and neuroinflammation in normal circumstances and potential biologic mechanisms for cognitive impairment, depression and fatigue attributable to SLE.


Systemic Lupus Erythematosus Synaptic Plasticity Systemic Lupus Erythematosus Patient Choroid Plexus Adult Neurogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bortoluzzi A, et al. Development and validation of a new algorithm for attribution of neuropsychiatric events in systemic lupus erythematosus. Rheumatology (Oxford). 2015;54(5):891–8.CrossRefGoogle Scholar
  2. 2.
    Hanly JG, et al. Neuropsychiatric events at the time of diagnosis of systemic lupus erythematosus: an international inception cohort study. Arthritis Rheum. 2007;56(1):265–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Peretti CS, et al. Cognitive impairment in systemic lupus erythematosus women with elevated autoantibodies and normal single photon emission computerized tomography. Psychother Psychosom. 2012;81(5):276–85.PubMedCrossRefGoogle Scholar
  4. 4.
    Kozora E, et al. Immune function and brain abnormalities in patients with systemic lupus erythematosus without overt neuropsychiatric manifestations. Lupus. 2012;21(4):402–11.PubMedCrossRefGoogle Scholar
  5. 5.
    Nowicka-Sauer K, et al. Neuropsychological assessment in systemic lupus erythematosus patients: clinical usefulness of first-choice diagnostic tests in detecting cognitive impairment and preliminary diagnosis of neuropsychiatric lupus. Clin Exp Rheumatol. 2011;29(2):299–306.PubMedGoogle Scholar
  6. 6.
    Petri M, et al. Depression and cognitive impairment in newly diagnosed systemic lupus erythematosus. J Rheumatol. 2010;37(10):2032–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Ainiala H, et al. The prevalence of neuropsychiatric syndromes in systemic lupus erythematosus. Neurology. 2001;57(3):496–500.PubMedCrossRefGoogle Scholar
  8. 8.
    Krupp LB, et al. A study of fatigue in systemic lupus erythematosus. J Rheumatol. 1990;17(11):1450–2.PubMedGoogle Scholar
  9. 9.
    Palagini L, et al. Depression and systemic lupus erythematosus: a systematic review. Lupus. 2013;22(5):409–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Schmeding A, Schneider M. Fatigue, health-related quality of life and other patient-reported outcomes in systemic lupus erythematosus. Best Pract Res Clin Rheumatol. 2013;27(3):363–75.PubMedCrossRefGoogle Scholar
  11. 11.
    Crowther AJ, Song J. Activity-dependent signaling mechanisms regulating adult hippocampal neural stem cells and their progeny. Neurosci Bull. 2014;30(4):542–56.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Marin I, Kipnis J. Learning and memory… and the immune system. Learn Mem. 2013;20(10):601–6.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25(2):181–213.PubMedCrossRefGoogle Scholar
  14. 14.
    Tremblay ME, et al. The role of microglia in the healthy brain. J Neurosci. 2011;31(45):16064–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Ransohoff RM, El Khoury J. Microglia in health and disease. Cold Spring Harb Perspect Biol. 2015. doi: 10.1101/cshperspect.a020560.PubMedGoogle Scholar
  16. 16.
    Shors TJ, Matzel LD. Long-term potentiation: what’s learning got to do with it? Behav Brain Sci. 1997;20(4):597–614.PubMedGoogle Scholar
  17. 17.
    Kipnis J, et al. Dual effect of CD4+ CD25+ regulatory T cells in neurodegeneration: a dialogue with microglia. Proc Natl Acad Sci USA. 2004;101(Suppl 2):14663–9.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ron-Harel N, et al. Age-dependent spatial memory loss can be partially restored by immune activation. Rejuvenation Res. 2008;11(5):903–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Baruch K, Schwartz M. CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun. 2013;34:11–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Derecki NC, et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med. 2010;207(5):1067–80.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Wolf SA, et al. CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol. 2009;182(7):3979–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Lewitus GM, Cohen H, Schwartz M. Reducing post-traumatic anxiety by immunization. Brain Behav Immun. 2008;22(7):1108–14.PubMedCrossRefGoogle Scholar
  23. 23.
    Lewitus GM, et al. Vaccination as a novel approach for treating depressive behavior. Biol Psychiatry. 2009;65(4):283–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Hauben E, et al. Vaccination with a Nogo-A-derived peptide after incomplete spinal-cord injury promotes recovery via a T-cell-mediated neuroprotective response: comparison with other myelin antigens. Proc Natl Acad Sci USA. 2001;98(26):15173–8.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Schwartz M, Baruch K. Breaking peripheral immune tolerance to CNS antigens in neurodegenerative diseases: boosting autoimmunity to fight-off chronic neuroinflammation. J Autoimmun. 2014;54:8–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Ma X, Foster J, Sakic B. Distribution and prevalence of leukocyte phenotypes in brains of lupus-prone mice. J Neuroimmunol. 2006;179(1–2):26–36.PubMedCrossRefGoogle Scholar
  27. 27.
    Marques F, Sousa JC. The choroid plexus is modulated by various peripheral stimuli: implications to diseases of the central nervous system. Front Cell Neurosci. 2015;9:136.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Butchi NB, et al. TLR7 and TLR9 trigger distinct neuroinflammatory responses in the CNS. Am J Pathol. 2011;179(2):783–94.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Szmydynger-Chodobska J, et al. Posttraumatic invasion of monocytes across the blood-cerebrospinal fluid barrier. J Cereb Blood Flow Metab. 2012;32(1):93–104.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Schobitz B, De Kloet ER, Holsboer F. Gene expression and function of interleukin 1, interleukin 6 and tumor necrosis factor in the brain. Prog Neurobiol. 1994;44(4):397–432.PubMedCrossRefGoogle Scholar
  31. 31.
    Vitkovic L, et al. Cytokine signals propagate through the brain. Mol Psychiatry. 2000;5(6):604–15.PubMedCrossRefGoogle Scholar
  32. 32.
    Marsland AL, et al. Brain morphology links systemic inflammation to cognitive function in midlife adults. Brain Behav Immun. 2015;48:195–204.PubMedCrossRefGoogle Scholar
  33. 33.
    Bucks RS, et al. Selective effects of upper respiratory tract infection on cognition, mood and emotion processing: a prospective study. Brain Behav Immun. 2008;22(3):399–407.PubMedCrossRefGoogle Scholar
  34. 34.
    Krabbe KS, et al. Low-dose endotoxemia and human neuropsychological functions. Brain Behav Immun. 2005;19(5):453–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Reichenberg A, et al. Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry. 2001;58(5):445–52.PubMedCrossRefGoogle Scholar
  36. 36.
    Gibertini M. IL1 beta impairs relational but not procedural rodent learning in a water maze task. Adv Exp Med Biol. 1996;402:207–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Banks WA, Erickson MA. The blood-brain barrier and immune function and dysfunction. Neurobiol Dis. 2010;37(1):26–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol. 2009;9(6):429–39.PubMedCrossRefGoogle Scholar
  39. 39.
    Ek M, et al. Inflammatory response: pathway across the blood-brain barrier. Nature. 2001;410(6827):430–1.PubMedCrossRefGoogle Scholar
  40. 40.
    Hosoi T, Okuma Y, Nomura Y. Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis. Am J Physiol Regul Integr Comp Physiol. 2000;279(1):R141–7.PubMedGoogle Scholar
  41. 41.
    Perry VH. Stress primes microglia to the presence of systemic inflammation: implications for environmental influences on the brain. Brain Behav Immun. 2007;21(1):45–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Chen J, et al. Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system. Brain Behav Immun. 2008;22(3):301–11.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Marsland AL, et al. Interleukin-6 covaries inversely with cognitive performance among middle-aged community volunteers. Psychosom Med. 2006;68(6):895–903.PubMedCrossRefGoogle Scholar
  44. 44.
    Harrison NA, et al. Peripheral inflammation acutely impairs human spatial memory via actions on medial temporal lobe glucose metabolism. Biol Psychiatry. 2014;76(7):585–93.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Davis LS, Hutcheson J, Mohan C. The role of cytokines in the pathogenesis and treatment of systemic lupus erythematosus. J Interferon Cytokine Res. 2011;31(10):781–9.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Azevedo PC, Murphy G, Isenberg DA. Pathology of systemic lupus erythematosus: the challenges ahead. Methods Mol Biol. 2014;1134:1–16.PubMedCrossRefGoogle Scholar
  47. 47.
    Kozora E, et al. Inflammatory and hormonal measures predict neuropsychological functioning in systemic lupus erythematosus and rheumatoid arthritis patients. J Int Neuropsychol Soc. 2001;7(6):745–54.PubMedCrossRefGoogle Scholar
  48. 48.
    Shucard JL, et al. C-reactive protein and cognitive deficits in systemic lupus erythematosus. Cogn Behav Neurol. 2007;20(1):31–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Chiche L, et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol. 2014;66(6):1583–95.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Crow MK. Interferon pathway activation in systemic lupus erythematosus. Curr Rheumatol Rep. 2005;7(6):463–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Ronnblom L. The type I interferon system in the etiopathogenesis of autoimmune diseases. Ups J Med Sci. 2011;116(4):227–37.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Raison CL, et al. Neuropsychiatric adverse effects of interferon-alpha: recognition and management. CNS Drugs. 2005;19(2):105–23.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Capuron L, Miller AH. Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry. 2004;56(11):819–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Nashan D, et al. Understanding and managing interferon-alpha-related fatigue in patients with melanoma. Melanoma Res. 2012;22(6):415–23.PubMedCrossRefGoogle Scholar
  55. 55.
    Wichers MC, et al. Interferon-alpha-induced depressive symptoms are related to changes in the cytokine network but not to cortisol. J Psychosom Res. 2007;62(2):207–14.PubMedCrossRefGoogle Scholar
  56. 56.
    Kamata M, et al. Effect of single intracerebroventricular injection of alpha-interferon on monoamine concentrations in the rat brain. Eur Neuropsychopharmacol. 2000;10(2):129–32.PubMedCrossRefGoogle Scholar
  57. 57.
    Kitagami T, et al. Mechanism of systemically injected interferon-alpha impeding monoamine biosynthesis in rats: role of nitric oxide as a signal crossing the blood-brain barrier. Brain Res. 2003;978(1–2):104–14.PubMedCrossRefGoogle Scholar
  58. 58.
    Raison CL, et al. Activation of central nervous system inflammatory pathways by interferon-alpha: relationship to monoamines and depression. Biol Psychiatry. 2009;65(4):296–303.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Lichtblau N, et al. Cytokines as biomarkers in depressive disorder: current standing and prospects. Int Rev Psychiatry. 2013;25(5):592–603.PubMedCrossRefGoogle Scholar
  60. 60.
    Schlaak JF, et al. Selective hyper-responsiveness of the interferon system in major depressive disorders and depression induced by interferon therapy. PLoS ONE. 2012;7(6):e38668.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Juengling FD, et al. Prefrontal cortical hypometabolism during low-dose interferon alpha treatment. Psychopharmacology. 2000;152(4):383–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Capuron L, et al. Basal ganglia hypermetabolism and symptoms of fatigue during interferon-alpha therapy. Neuropsychopharmacology. 2007;32(11):2384–92.PubMedCrossRefGoogle Scholar
  63. 63.
    Bachen EA, Chesney MA, Criswell LA. Prevalence of mood and anxiety disorders in women with systemic lupus erythematosus. Arthritis Rheum. 2009;61(6):822–9.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Nery FG, et al. Prevalence of depressive and anxiety disorders in systemic lupus erythematosus and their association with anti-ribosomal P antibodies. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(3):695–700.PubMedCrossRefGoogle Scholar
  65. 65.
    Utset TO, et al. Depressive symptoms in patients with systemic lupus erythematosus: association with central nervous system lupus and Sjogren’s syndrome. J Rheumatol. 1994;21(11):2039–45.PubMedGoogle Scholar
  66. 66.
    Santer DM, et al. Potent induction of IFN-alpha and chemokines by autoantibodies in the cerebrospinal fluid of patients with neuropsychiatric lupus. J Immunol. 2009;182(2):1192–201.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Winfield JB, et al. Intrathecal IgG synthesis and blood-brain barrier impairment in patients with systemic lupus erythematosus and central nervous system dysfunction. Am J Med. 1983;74(5):837–44.PubMedCrossRefGoogle Scholar
  68. 68.
    Shiozawa S, et al. Interferon-alpha in lupus psychosis. Arthritis Rheum. 1992;35(4):417–22.PubMedCrossRefGoogle Scholar
  69. 69.
    Lee SW, et al. The efficacy of brain (18)F-fluorodeoxyglucose positron emission tomography in neuropsychiatric lupus patients with normal brain magnetic resonance imaging findings. Lupus. 2012;21(14):1531–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Morris G, et al. Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses. BMC Med. 2015;13:28.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Morris G, Maes M. Oxidative and nitrosative stress and immune-inflammatory pathways in patients with myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). Curr Neuropharmacol. 2014;12(2):168–85.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Lucas K, Maes M. Role of the Toll Like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol Neurobiol. 2013;48(1):190–204.PubMedCrossRefGoogle Scholar
  73. 73.
    Liu Z, Davidson A. Taming lupus-a new understanding of pathogenesis is leading to clinical advances. Nat Med. 2012;18(6):871–82.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Horton CG, Pan ZJ, Farris AD. Targeting Toll-like receptors for treatment of SLE. Mediators Inflamm. 2010. doi: 10.1155/2010/498980.
  75. 75.
    Morris G, Maes M. Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics. BMC Med. 2013;11:205.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Wu T, et al. Metabolic disturbances associated with systemic lupus erythematosus. PLoS One. 2012;7(6):e37210.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Arriens C, et al. Placebo-controlled randomized clinical trial of fish oil’s impact on fatigue, quality of life, and disease activity in systemic lupus erythematosus. Nutr J. 2015;14(1):82.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Ben Menachem-Zidon O, et al. Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling. Brain Behav Immun. 2011;25(5):1008–16.PubMedCrossRefGoogle Scholar
  79. 79.
    Wolf G, et al. Interleukin-1 signaling is required for induction and maintenance of postoperative incisional pain: genetic and pharmacological studies in mice. Brain Behav Immun. 2008;22(7):1072–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Yang YM, et al. Microglial TNF-alpha-dependent elevation of MHC class I expression on brain endothelium induced by amyloid-beta promotes T cell transendothelial migration. Neurochem Res. 2013;38(11):2295–304.PubMedCrossRefGoogle Scholar
  81. 81.
    Schneider H, et al. A neuromodulatory role of interleukin-1beta in the hippocampus. Proc Natl Acad Sci USA. 1998;95(13):7778–83.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Goshen I, et al. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology. 2007;32(8–10):1106–15.PubMedCrossRefGoogle Scholar
  83. 83.
    Labrousse VF, et al. Impaired interleukin-1beta and c-Fos expression in the hippocampus is associated with a spatial memory deficit in P2X(7) receptor-deficient mice. PLoS ONE. 2009;4(6):e6006.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Yirmiya R, Winocur G, Goshen I. Brain interleukin-1 is involved in spatial memory and passive avoidance conditioning. Neurobiol Learn Mem. 2002;78(2):379–89.PubMedCrossRefGoogle Scholar
  85. 85.
    Gibertini M. Cytokines and cognitive behavior. NeuroImmunoModulation. 1998;5(3–4):160–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Avital A, et al. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus. 2003;13(7):826–34.PubMedCrossRefGoogle Scholar
  87. 87.
    Goshen I, et al. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry. 2008;13(7):717–28.PubMedCrossRefGoogle Scholar
  88. 88.
    Beattie EC, et al. Control of synaptic strength by glial TNFalpha. Science. 2002;295(5563):2282–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Steinmetz CC, Turrigiano GG. Tumor necrosis factor-alpha signaling maintains the ability of cortical synapses to express synaptic scaling. J Neurosci. 2010;30(44):14685–90.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature. 2006;440(7087):1054–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Balschun D, et al. Interleukin-6: a cytokine to forget. Faseb J. 2004;18(14):1788–90.PubMedGoogle Scholar
  92. 92.
    Jankowsky JL, Derrick BE, Patterson PH. Cytokine responses to LTP induction in the rat hippocampus: a comparison of in vitro and in vivo techniques. Learn Mem. 2000;7(6):400–12.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Olmos G, Llado J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm. 2014;2014:861231.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Santello M, Volterra A. TNFalpha in synaptic function: switching gears. Trends Neurosci. 2012;35(10):638–47.PubMedCrossRefGoogle Scholar
  95. 95.
    Vallieres L, et al. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci. 2002;22(2):486–92.PubMedGoogle Scholar
  96. 96.
    Nelson TE, et al. Altered synaptic transmission in the hippocampus of transgenic mice with enhanced central nervous systems expression of interleukin-6. Brain Behav Immun. 2012;26(6):959–71.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Paolicelli RC, Bisht K, Tremblay ME. Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Front Cell Neurosci. 2014;8:129.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Schwabe L, et al. Stress impairs spatial but not early stimulus-response learning. Behav Brain Res. 2010;213(1):50–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Schwabe L, Wolf OT, Oitzl MS. Memory formation under stress: quantity and quality. Neurosci Biobehav Rev. 2010;34(4):584–91.PubMedCrossRefGoogle Scholar
  100. 100.
    Kempermann G, Song H, Gage FH. Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol. 2015;7:a018812.PubMedCrossRefGoogle Scholar
  101. 101.
    Koehl M. Gene-environment interaction in programming hippocampal plasticity: focus on adult neurogenesis. Front Mol Neurosci. 2015;8:41.PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Koehl M, Abrous DN. A new chapter in the field of memory: adult hippocampal neurogenesis. Eur J Neurosci. 2011;33(6):1101–14.PubMedCrossRefGoogle Scholar
  103. 103.
    Amrein I. Adult hippocampal neurogenesis in natural populations of mammals. Cold Spring Harb Perspect Biol. 2015;5:a021295.CrossRefGoogle Scholar
  104. 104.
    Aimone JB, Deng W, Gage FH. Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron. 2011;70(4):589–96.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Sahay A, Wilson DA, Hen R. Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron. 2011;70(4):582–8.PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Leuner B, et al. Learning enhances the survival of new neurons beyond the time when the hippocampus is required for memory. J Neurosci. 2004;24(34):7477–81.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol. 2001;435(4):406–17.PubMedCrossRefGoogle Scholar
  108. 108.
    Ziv Y, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006;9(2):268–75.PubMedCrossRefGoogle Scholar
  109. 109.
    Opendak M, Gould E. Adult neurogenesis: a substrate for experience-dependent change. Trends Cogn Sci. 2015;19(3):151–61.PubMedCrossRefGoogle Scholar
  110. 110.
    Schoenfeld TJ, Gould E. Stress, stress hormones, and adult neurogenesis. Exp Neurol. 2012;233(1):12–21.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Conrad CD. A critical review of chronic stress effects on spatial learning and memory. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(5):742–55.PubMedCrossRefGoogle Scholar
  112. 112.
    Kreisel T, et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry. 2014;19(6):699–709.PubMedCrossRefGoogle Scholar
  113. 113.
    Chetty S, et al. Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Mol Psychiatry. 2014;19(12):1275–83.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Whitney NP, et al. Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem. 2009;108(6):1343–59.PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Inoue K, et al. Long-term mild, rather than intense, exercise enhances adult hippocampal neurogenesis and greatly changes the transcriptomic profile of the hippocampus. PLoS One. 2015;10(6):e0128720.PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Biedermann SV, et al. The hippocampus and exercise: histological correlates of MR-detected volume changes. Brain Struct Funct. 2014. doi: 10.1007/s00429-014-0976-5.PubMedGoogle Scholar
  117. 117.
    Suh H, et al. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell. 2007;1(5):515–28.PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Ahlskog JE, et al. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin Proc. 2011;86(9):876–84.PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Smith PJ, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239–52.PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Mouret A, et al. Learning and survival of newly generated neurons: when time matters. J Neurosci. 2008;28(45):11511–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Drapeau E, et al. Learning-induced survival of new neurons depends on the cognitive status of aged rats. J Neurosci. 2007;27(22):6037–44.PubMedCrossRefGoogle Scholar
  122. 122.
    Winocur G, et al. Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus. 2006;16(3):296–304.PubMedCrossRefGoogle Scholar
  123. 123.
    Jessberger S, et al. Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn Mem. 2009;16(2):147–54.PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Stanojcic M, et al. Disturbed distribution of proliferative brain cells during lupus-like disease. Brain Behav Immun. 2009;23(7):1003–13.PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Zimmermann N, et al. Global cognitive impairment in systemic lupus erythematosus patients: a structural MRI study. Clin Neuroradiol. 2015. doi: 10.1007/s00062-015-0397-8.PubMedGoogle Scholar
  126. 126.
    Lauvsnes MB, et al. Association of hippocampal atrophy with cerebrospinal fluid antibodies against the NR2 subtype of the N-methyl-d-aspartate receptor in patients with systemic lupus erythematosus and patients with primary Sjogren’s syndrome. Arthritis Rheumatol. 2014;66(12):3387–94.PubMedCrossRefGoogle Scholar
  127. 127.
    Hanly JG, et al. A prospective analysis of cognitive function and anticardiolipin antibodies in systemic lupus erythematosus. Arthritis Rheum. 1999;42(4):728–34.PubMedCrossRefGoogle Scholar
  128. 128.
    Menon S, et al. A longitudinal study of anticardiolipin antibody levels and cognitive functioning in systemic lupus erythematosus. Arthritis Rheum. 1999;42(4):735–41.PubMedCrossRefGoogle Scholar
  129. 129.
    Waterloo K, et al. Neuropsychological function in systemic lupus erythematosus: a five-year longitudinal study. Rheumatology (Oxford). 2002;41(4):411–5.CrossRefGoogle Scholar
  130. 130.
    Waterloo K, et al. Neuropsychological dysfunction in systemic lupus erythematosus is not associated with changes in cerebral blood flow. J Neurol. 2001;248(7):595–602.PubMedCrossRefGoogle Scholar
  131. 131.
    Devinsky O, Petito CK, Alonso DR. Clinical and neuropathological findings in systemic lupus erythematosus: the role of vasculitis, heart emboli, and thrombotic thrombocytopenic purpura. Ann Neurol. 1988;23(4):380–4.PubMedCrossRefGoogle Scholar
  132. 132.
    Ellis SG, Verity MA. Central nervous system involvement in systemic lupus erythematosus: a review of neuropathologic findings in 57 cases, 1955–1977. Semin Arthritis Rheum. 1979;8(3):212–21.PubMedCrossRefGoogle Scholar
  133. 133.
    Hanly JG, Walsh NM, Sangalang V. Brain pathology in systemic lupus erythematosus. J Rheumatol. 1992;19(5):732–41.PubMedGoogle Scholar
  134. 134.
    Scolding NJ, Joseph FG. The neuropathology and pathogenesis of systemic lupus erythematosus. Neuropathol Appl Neurobiol. 2002;28(3):173–89.PubMedCrossRefGoogle Scholar
  135. 135.
    Yajima N, et al. Elevated levels of soluble fractalkine in active systemic lupus erythematosus: potential involvement in neuropsychiatric manifestations. Arthritis Rheum. 2005;52(6):1670–5.PubMedCrossRefGoogle Scholar
  136. 136.
    Hirohata S, Miyamoto T. Elevated levels of interleukin-6 in cerebrospinal fluid from patients with systemic lupus erythematosus and central nervous system involvement. Arthritis Rheum. 1990;33(5):644–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Trysberg E, Carlsten H, Tarkowski A. Intrathecal cytokines in systemic lupus erythematosus with central nervous system involvement. Lupus. 2000;9(7):498–503.PubMedCrossRefGoogle Scholar
  138. 138.
    Alcocer-Varela J, Aleman-Hoey D, Alarcon-Segovia D. Interleukin-1 and interleukin-6 activities are increased in the cerebrospinal fluid of patients with CNS lupus erythematosus and correlate with local late T-cell activation markers. Lupus. 1992;1(2):111–7.PubMedCrossRefGoogle Scholar
  139. 139.
    Katsumata Y, et al. Diagnostic reliability of cerebral spinal fluid tests for acute confusional state (delirium) in patients with systemic lupus erythematosus: interleukin 6 (IL-6), IL-8, interferon-alpha, IgG index, and Q-albumin. J Rheumatol. 2007;34(10):2010–7.PubMedGoogle Scholar
  140. 140.
    George-Chandy A, Trysberg E, Eriksson K. Raised intrathecal levels of APRIL and BAFF in patients with systemic lupus erythematosus: relationship to neuropsychiatric symptoms. Arthritis Res Ther. 2008;10(4):R97.PubMedCentralPubMedCrossRefGoogle Scholar
  141. 141.
    Fragoso-Loyo H, et al. Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum. 2007;56(4):1242–50.PubMedCrossRefGoogle Scholar
  142. 142.
    Trysberg E, et al. Neuronal and astrocytic damage in systemic lupus erythematosus patients with central nervous system involvement. Arthritis Rheum. 2003;48(10):2881–7.PubMedCrossRefGoogle Scholar
  143. 143.
    Trysberg E, et al. Intrathecal levels of matrix metalloproteinases in systemic lupus erythematosus with central nervous system engagement. Arthritis Res Ther. 2004;6(6):R551–6.PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Hsu TC, et al. Beneficial effects of treatment with cystamine on brain in NZB/W F1 mice. Eur J Pharmacol. 2008;591(1–3):307–14.PubMedCrossRefGoogle Scholar
  145. 145.
    Tomita M, Holman BJ, Santoro TJ. Aberrant cytokine gene expression in the hippocampus in murine systemic lupus erythematosus. Neurosci Lett. 2001;302(2–3):129–32.PubMedCrossRefGoogle Scholar
  146. 146.
    McLean BN, Miller D, Thompson EJ. Oligoclonal banding of IgG in CSF, blood-brain barrier function, and MRI findings in patients with sarcoidosis, systemic lupus erythematosus, and Behcet’s disease involving the nervous system. J Neurol Neurosurg Psychiatry. 1995;58(5):548–54.PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    Nishimura K, et al. Blood-brain barrier damage as a risk factor for corticosteroid-induced psychiatric disorders in systemic lupus erythematosus. Psychoneuroendocrinology. 2008;33(3):395–403.PubMedCrossRefGoogle Scholar
  148. 148.
    Bertsias GK, Boumpas DT. Pathogenesis, diagnosis and management of neuropsychiatric SLE manifestations. Nat Rev Rheumatol. 2010;6(6):358–67.PubMedCrossRefGoogle Scholar
  149. 149.
    Sidor MM, et al. Elevated immunoglobulin levels in the cerebrospinal fluid from lupus-prone mice. J Neuroimmunol. 2005;165(1–2):104–13.PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Schenatto CB, et al. Raised serum S100B protein levels in neuropsychiatric lupus. Ann Rheum Dis. 2006;65(6):829–31.PubMedCentralPubMedCrossRefGoogle Scholar
  151. 151.
    Hirohata S, et al. Blood-brain barrier damages and intrathecal synthesis of anti-N-methyl-d-aspartate receptor NR2 antibodies in diffuse psychiatric/neuropsychological syndromes in systemic lupus erythematosus. Arthritis Res Ther. 2014;16(2):R77.PubMedCentralPubMedCrossRefGoogle Scholar
  152. 152.
    Sled JG, et al. Time course and nature of brain atrophy in the MRL mouse model of central nervous system lupus. Arthritis Rheum. 2009;60(6):1764–74.PubMedCrossRefGoogle Scholar
  153. 153.
    Abbott NJ, Mendonca LL, Dolman DE. The blood-brain barrier in systemic lupus erythematosus. Lupus. 2003;12(12):908–15.PubMedCrossRefGoogle Scholar
  154. 154.
    O’Carroll SJ, et al. Pro-inflammatory TNFalpha and IL-1beta differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation. 2015;12:131.PubMedCentralPubMedCrossRefGoogle Scholar
  155. 155.
    Stock AD, Wen J, Putterman C. Neuropsychiatric lupus, the blood brain barrier, and the TWEAK/Fn14 pathway. Front Immunol. 2013;4:484.PubMedCentralPubMedCrossRefGoogle Scholar
  156. 156.
    Rekvig OP, et al. Autoantibodies in lupus: culprits or passive bystanders? Autoimmun Rev. 2012;11(8):596–603.PubMedCrossRefGoogle Scholar
  157. 157.
    Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat Rev Neurol. 2014;10(10):579–96.PubMedCrossRefGoogle Scholar
  158. 158.
    Hu C, et al. Autoantibody profiling on human proteome microarray for biomarker discovery in cerebrospinal fluid and sera of neuropsychiatric lupus. PLoS One. 2015;10(5):e0126643.PubMedCentralPubMedCrossRefGoogle Scholar
  159. 159.
    Gaynor B, et al. Peptide inhibition of glomerular deposition of an anti-DNA antibody. Proc Natl Acad Sci USA. 1997;94(5):1955–60.PubMedCentralPubMedCrossRefGoogle Scholar
  160. 160.
    Faust TW, et al. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proc Natl Acad Sci USA. 2010;107(43):18569–74.PubMedCentralPubMedCrossRefGoogle Scholar
  161. 161.
    Huerta PT, et al. Immunity and behavior: antibodies alter emotion. Proc Natl Acad Sci USA. 2006;103(3):678–83.PubMedCentralPubMedCrossRefGoogle Scholar
  162. 162.
    Kowal C, et al. Cognition and immunity; antibody impairs memory. Immunity. 2004;21(2):179–88.PubMedCrossRefGoogle Scholar
  163. 163.
    Chang EH, et al. Selective impairment of spatial cognition caused by autoantibodies to the N-Methyl-d-Aspartate receptor. EBioMedicine. 2015;2(7):755–64.PubMedCentralPubMedCrossRefGoogle Scholar
  164. 164.
    Omdal R, et al. Neuropsychiatric disturbances in SLE are associated with antibodies against NMDA receptors. Eur J Neurol. 2005;12(5):392–8.PubMedCrossRefGoogle Scholar
  165. 165.
    Arinuma Y, Yanagida T, Hirohata S. Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 2008;58(4):1130–5.PubMedCrossRefGoogle Scholar
  166. 166.
    Fragoso-Loyo H, et al. Serum and cerebrospinal fluid autoantibodies in patients with neuropsychiatric lupus erythematosus. Implications for diagnosis and pathogenesis. PLoS One. 2008;3(10):e3347.PubMedCentralPubMedCrossRefGoogle Scholar
  167. 167.
    Yoshio T, et al. Association of IgG anti-NR2 glutamate receptor antibodies in cerebrospinal fluid with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 2006;54(2):675–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Massardo L, et al. Anti-N-methyl-d-aspartate receptor and anti-ribosomal-P autoantibodies contribute to cognitive dysfunction in systemic lupus erythematosus. Lupus. 2015;24(6):558–68.PubMedCrossRefGoogle Scholar
  169. 169.
    Mackay M, et al. Brain metabolism and autoantibody titres predict functional impairment in systemic lupus erythematosus. Lupus Sci Med. 2015;2(1):e000074.PubMedCentralPubMedCrossRefGoogle Scholar
  170. 170.
    Elkon KB, Parnassa AP, Foster CL. Lupus autoantibodies target ribosomal P proteins. J Exp Med. 1985;162(2):459–71.PubMedCrossRefGoogle Scholar
  171. 171.
    Briani C, et al. Neurolupus is associated with anti-ribosomal P protein antibodies: an inception cohort study. J Autoimmun. 2009;32(2):79–84.PubMedCrossRefGoogle Scholar
  172. 172.
    Hirohata S, et al. Association of cerebrospinal fluid anti-ribosomal p protein antibodies with diffuse psychiatric/neuropsychological syndromes in systemic lupus erythematosus. Arthritis Res Ther. 2007;9(3):R44.PubMedCentralPubMedCrossRefGoogle Scholar
  173. 173.
    Karassa FB, et al. Accuracy of anti-ribosomal P protein antibody testing for the diagnosis of neuropsychiatric systemic lupus erythematosus: an international meta-analysis. Arthritis Rheum. 2006;54(1):312–24.PubMedCrossRefGoogle Scholar
  174. 174.
    Hanly JG, et al. Autoantibodies as biomarkers for the prediction of neuropsychiatric events in systemic lupus erythematosus. Ann Rheum Dis. 2011;70(10):1726–32.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Reichlin M. Autoantibodies to the ribosomal P proteins in systemic lupus erythematosus. Clin Exp Med. 2006;6(2):49–52.PubMedCrossRefGoogle Scholar
  176. 176.
    Matus S, et al. Antiribosomal-P autoantibodies from psychiatric lupus target a novel neuronal surface protein causing calcium influx and apoptosis. J Exp Med. 2007;204(13):3221–34.PubMedCentralPubMedCrossRefGoogle Scholar
  177. 177.
    Segovia-Miranda F, et al. Pathogenicity of lupus anti-ribosomal P antibodies: role of cross-reacting neuronal surface P antigen in glutamatergic transmission and plasticity in a mouse model. Arthritis Rheumatol. 2015;67(6):1598–610.PubMedCrossRefGoogle Scholar
  178. 178.
    Bravo-Zehnder M, et al. Anti-ribosomal P protein autoantibodies from patients with neuropsychiatric lupus impair memory in mice. Arthritis Rheumatol. 2015;67(1):204–14.PubMedCrossRefGoogle Scholar
  179. 179.
    Katzav A, et al. Anti-P ribosomal antibodies induce defect in smell capability in a model of CNS -SLE (depression). J Autoimmun. 2008;31(4):393–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Center for Autoimmune and Musculoskeletal DiseasesThe Feinstein Institute for Medical ResearchManhassetUSA

Personalised recommendations