Skip to main content

Advertisement

Log in

Integrative neuroscience approach to neuropsychiatric lupus

  • AUTOIMMUNITY/IMMUNOREGULATION/INFLAMMATION
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

We present a succinct review of our approach to study the interactions between the DNA-reactive antibodies that cross-react with the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor, denoted DNRABs, and their brain targets in subjects with neuropsychiatric systemic lupus erythematosus (NPSLE). We have analyzed the DNRAB-based brain symptomatology in mouse models of NPSLE by using an integrative neuroscience approach, which includes behavioral assessment coupled with electrophysiological studies of neural networks and synaptic connections in target brain regions, such as the CA1 region of the hippocampus. Our results suggest a framework for understanding the interactions between immune factors and neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Danchenko N, Satia J, Anthony M. Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus. 2006;15:308–18.

    Article  CAS  PubMed  Google Scholar 

  2. Lahita RG. Systemic lupus erythematosus. 4th ed. Amsterdam: Elsevier; 2004.

    Google Scholar 

  3. ACR Ad Hoc Committee on Neuropsychiatric Lupus Nomenclature. The American College of Rheumatology. Nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 1999;42:599–608.

    Article  Google Scholar 

  4. Brey RL, et al. Neuropsychiatric syndromes in lupus: prevalence using standardized definitions. Neurology. 2002;58:1214–20.

    Article  CAS  PubMed  Google Scholar 

  5. Bertsias GK, Boumpas DT. Pathogenesis, diagnosis and management of neuropsychiatric SLE manifestations. Nat Rev Rheumatol. 2010;6:358–67.

    Article  PubMed  Google Scholar 

  6. Ainiala H, et al. The prevalence of neuropsychiatric syndromes in systemic lupus erythematosus. Neurology. 2001;57:496–500.

    Article  CAS  PubMed  Google Scholar 

  7. Levy D, Ardoin S, Schanberg L. Neurocognitive impairment in children and adolescents with systemic lupus erythematosus. Nat Clin Pract Rheumatol. 2009;5:106–14.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hanly JG. Neuropsychiatric lupus. Rheum Dis Clin North Am. 2005;31:273–98.

    Article  PubMed  Google Scholar 

  9. Hanly JG, et al. Prospective analysis of neuropsychiatric events in an international disease inception cohort of patients with systemic lupus erythematosus. Ann Rheum Dis. 2010;69:529–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sabbadini M, et al. (1999). Central nervous system involvement in systemic lupus erythematosus patients without overt neuropsychiatric manifestations. Lupus 8:11–9.

  11. Hanly JG, et al. A prospective analysis of cognitive function and anticardiolipin antibodies in systemic lupus erythematosus. Arthritis Rheum. 1999;42:728–34.

    Article  CAS  PubMed  Google Scholar 

  12. Carbotte RM, Denburg SD, Denburg JA. Prevalence of cognitive impairment in systemic lupus erythematosus. J Nerv Ment Dis. 1986;174:357–64.

    Article  CAS  PubMed  Google Scholar 

  13. Denburg SD, Carbotte RM, Denburg JA. Cognitive impairment in systemic lupus erythematosus: a neuropsychological study of individual and group deficits. J Clin Exp Neuropsychol. 1987;9:323–39.

    Article  CAS  PubMed  Google Scholar 

  14. Hanly JG, Robichaud J, Fisk J. Anti-NR2 glutamate receptor antibodies and cognitive function in systemic lupus erythematosus. J Rheumatol. 2006;33:1553–8.

    CAS  PubMed  Google Scholar 

  15. Hanly JG. Diagnosis and management of neuropsychiatric SLE. Nat Rev Rheumatol. 2014;10:338–47.

    Article  CAS  PubMed  Google Scholar 

  16. Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat Rev Neurol. 2014;10:579–96.

    Article  CAS  PubMed  Google Scholar 

  17. Olazarán J, et al. Cognitive dysfunction in systemic lupus erythematosus: prevalence and correlates. Eur Neurol. 2009;62:49–55.

    Article  PubMed  Google Scholar 

  18. Kozora E, et al. Inflammatory and hormonal measures predict neuropsychological functioning in systemic lupus erythematosus and rheumatoid arthritis patients. J Int Neuropsychol Soc. 2001;7:745–54.

    Article  CAS  PubMed  Google Scholar 

  19. Wallace DJ, Hahn B, Dubois EL. Dubois’ lupus erythematosus. 5th ed. Baltimore: Williams & Wilkins; 1997.

    Google Scholar 

  20. Carbotte RM, Denburg SD, Denburg JA. Cognitive dysfunction in systemic lupus erythematosus is independent of active disease. J Rheumatol. 1995;22:863–7.

    CAS  PubMed  Google Scholar 

  21. McLaurin EY, et al. Predictors of cognitive dysfunction in patients with systemic lupus erythematosus. Neurology. 2005;64:297–303.

    Article  CAS  PubMed  Google Scholar 

  22. Harboe E, et al. Neuropsychiatric syndromes in patients with systemic lupus erythematosus and primary Sjögren syndrome: a comparative population-based study. Ann Rheum Dis. 2009;68:1541–6.

    Article  CAS  PubMed  Google Scholar 

  23. Utset TO, et al. Prevalence of neurocognitive dysfunction and other clinical manifestations in disabled patients with systemic lupus erythematosus. J Rheumatol. 2006;33:531–8.

    PubMed  Google Scholar 

  24. Appenzeller S, et al. Cognitive impairment and employment status in systemic lupus erythematosus: a prospective longitudinal study. Arthritis Rheum. 2009;61:680–7.

    Article  PubMed  Google Scholar 

  25. Roebuck-Spencer TM, et al. Use of computerized assessment to predict neuropsychological functioning and emotional distress in patients with systemic lupus erythematosus. Arthritis Rheum. 2006;55:434–41.

    Article  PubMed  Google Scholar 

  26. Kozora E, et al. Cognitive dysfunction in systemic lupus erythematosus: past, present, and future. Arthritis Rheum. 2008;58:3286–98.

    Article  PubMed  Google Scholar 

  27. Petri M, et al. Cognitive function in a systemic lupus erythematosus inception cohort. J Rheumatol. 2008;35:1776–81.

    Article  PubMed  Google Scholar 

  28. Bertsias GK, et al. EULAR recommendations for the management of systemic lupus erythematosus with neuropsychiatric manifestations: report of a task force of the EULAR standing committee for clinical affairs. Ann Rheum Dis. 2010;69:2074–82.

    Article  CAS  PubMed  Google Scholar 

  29. Brunner HI, et al. Initial validation of the Pediatric Automated Neuropsychological Assessment Metrics for childhood-onset systemic lupus erythematosus. Arthritis Rheum. 2007;57:1174–82.

    Article  PubMed  Google Scholar 

  30. Cieślik P, et al. Vasculopathy and vasculitis in systemic lupus erythematosus. Pol Arch Med Wewn. 2008;118:57–63.

    PubMed  Google Scholar 

  31. Fietta P, et al. Psychiatric and neuropsychological manifestations of systemic lupus erythematosus. Acta Biomed. 2011;82:97–114.

    PubMed  Google Scholar 

  32. Golan TD. Lupus vasculitis: differential diagnosis with antiphospholipid syndrome. Curr Rheumatol Rep. 2002;4:18–24.

    Article  PubMed  Google Scholar 

  33. Bluestein HG, Zvaifler NJ. Brain-reactive lymphocytotoxic antibodies in the serum of patients with systemic lupus erythematosus. J Clin Invest. 1976;57:509–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bresnihan B, et al. Brain reactivity of lymphocytotoxic antibodies in systemic lupus erythematosus with and without cerebral involvement. Clin Exp Immunol. 1977;30:333–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bresnihan B, et al. An antineuronal antibody cross-reacting with erythrocytes and lymphocytes in systemic lupus erythematosus. Arthritis Rheum. 1979;22:313–20.

    Article  CAS  PubMed  Google Scholar 

  36. How A, et al. Antineuronal antibodies in neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 1985;28:789–95.

    Article  CAS  PubMed  Google Scholar 

  37. Temesvari P, et al. Serum lymphocytotoxic antibodies in neuropsychiatric lupus: a serial study. Clin Immunol Immunopathol. 1983;28:243–51.

    Article  CAS  PubMed  Google Scholar 

  38. Wilson HA, et al. Association of IgG anti-brain antibodies with central nervous system dysfunction in systemic lupus erythematosus. Arthritis Rheum. 1979;22:458–62.

    Article  CAS  PubMed  Google Scholar 

  39. DeGiorgio LA, et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med. 2001;7:1189–93.

    Article  CAS  PubMed  Google Scholar 

  40. Kowal C, et al. Cognition and immunity; antibody impairs memory. Immunity. 2004;21:179–88.

    Article  CAS  PubMed  Google Scholar 

  41. Huerta PT, et al. Immunity and behavior: antibodies alter emotion. Proc Natl Acad Sci USA. 2006;103:678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kowal C, et al. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc Natl Acad Sci USA. 2006;103:19854–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee JY, et al. Neurotoxic autoantibodies mediate congenital cortical impairment of offspring in maternal lupus. Nat Med. 2009;15:91–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Diamond B, et al. Losing your nerves? Maybe it’s the antibodies. Nat Rev Immunol. 2009;9:449–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Faust TW, et al. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proc Natl Acad Sci USA. 2010;107:18569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang L, et al. Female mouse fetal loss mediated by maternal autoantibody. J Exp Med. 2012;209:1083–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bloom O, et al. Generation of a unique small peptidomimetic that neutralizes lupus autoantibody activity. Proc Natl Acad Sci USA. 2011;108:10255–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Diamond B, et al. Moving towards a cure: blocking pathogenic antibodies in systemic lupus erythematosus. J Intern Med. 2011;269:36–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mackay M, et al. Differences in regional brain activation patterns assessed by functional magnetic resonance imaging in patients with systemic lupus erythematosus stratified by disease duration. Mol Med. 2011;17:1349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fragoso-Loyo H, et al. Serum and cerebrospinal fluid autoantibodies in patients with neuropsychiatric lupus erythematosus. Implications for diagnosis and pathogenesis. PLoS ONE. 2008;3:e3347.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yoshio T, et al. Association of IgG anti-NR2 glutamate receptor antibodies in cerebrospinal fluid with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 2006;54:675–8.

    Article  CAS  PubMed  Google Scholar 

  52. Steup-Beekman G, et al. Anti-NMDA receptor autoantibodies in patients with systemic lupus erythematosus and their first-degree relatives. Lupus. 2007;16:329–34.

    Article  CAS  PubMed  Google Scholar 

  53. Arinuma Y, et al. Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 2008;58:1130–5.

    Article  CAS  PubMed  Google Scholar 

  54. Bosch X, et al. The DWEYS peptide in systemic lupus erythematosus. Trends Mol Med. 2012;18:215–23.

    Article  CAS  PubMed  Google Scholar 

  55. Lauvsnes MB, Omdal R. Systemic lupus erythematosus, the brain, and anti-NR2 antibodies. J Neurol. 2012;259:622–9.

    Article  CAS  PubMed  Google Scholar 

  56. Matus S, et al. Antiribosomal-P autoantibodies from psychiatric lupus target a novel neuronal surface protein causing calcium influx and apoptosis. J Exp Med. 2007;204:3221–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kivity S, et al. Abnormal olfactory function demonstrated by manganese-enhanced MRI in mice with experimental neuropsychiatric lupus. Ann N Y Acad Sci. 2010;1193:70–7.

    Article  PubMed  Google Scholar 

  58. Jacob A, et al. C5a alters blood-brain barrier integrity in experimental lupus. FASEB J. 2010;24:1682–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sakić B. The MRL model: an invaluable tool in studies of autoimmunity-brain interactions. Methods Mol Biol. 2012;934:277–99.

    Article  PubMed  Google Scholar 

  60. Gielen M, et al. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 2009;459:703–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Collingridge GL, Kehl SJ, McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol. 1983;334:33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ozawa S, Kamiya H, Tsuzuki K. Glutamate receptors in the mammalian central nervous system. Prog Neurobiol. 1998;54:581–618.

    Article  CAS  PubMed  Google Scholar 

  63. Huntley GW, Vickers JC, Morrison JH. Cellular and synaptic localization of NMDA and non-NMDA receptor subunits in neocortex: organizational features related to cortical circuitry, function and disease. Trends Neurosci. 1994;17:536–43.

    Article  CAS  PubMed  Google Scholar 

  64. Wenthold RJ, et al. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci. 1996;16:1982–9.

    CAS  PubMed  Google Scholar 

  65. Regalado MP, Villarroel A, Lerma J. Intersubunit cooperativity in the NMDA receptor. Neuron. 2001;32:1085–96.

    Article  CAS  PubMed  Google Scholar 

  66. Kutsuwada T, et al. Molecular diversity of the NMDA receptor channel. Nature. 1992;358:36–41.

    Article  CAS  PubMed  Google Scholar 

  67. Collingridge GL, Singer W. Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci. 1990;11:290–6.

    Article  CAS  PubMed  Google Scholar 

  68. Coan EJ, Collingridge GL. Magnesium ions block an N-methyl-D-aspartate receptor-mediated component of synaptic transmission in rat hippocampus. Neurosci Lett. 1985;53:21–6.

    Article  CAS  PubMed  Google Scholar 

  69. Aarts M, et al. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science. 2002;298:846–50.

    Article  CAS  PubMed  Google Scholar 

  70. Aarts M, Tymianski M. Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. Curr Mol Med. 2004;4:137–47.

    Article  CAS  PubMed  Google Scholar 

  71. Hong SJ, Dawson TM, Dawson VL. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci. 2004;25:259–64.

    Article  CAS  PubMed  Google Scholar 

  72. Cull-Candy SG, Leszkiewicz DN. Role of distinct NMDA receptor subtypes at central synapses. Science. 2004;255:16–25.

    Google Scholar 

  73. Cajal SR. Histologie du systeme nerveux de l’homme et des vertebrae. Paris: Moline; 1911.

    Google Scholar 

  74. Amaral DG, Witter MP. Hippocampal formation. In: Paxinos G, editor. The rat nervous system. New York: Academic Press; 1995. p. 443–93.

    Google Scholar 

  75. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurochem. 1957;20:11–21.

    CAS  Google Scholar 

  76. Mishkin M, Vargha-Khadem F, Gadian DG. Amnesia and the organization of the hippocampal system. Hippocampus. 1998;8:212–6.

    Article  CAS  PubMed  Google Scholar 

  77. Morris RGM. Theories of hippocampal function. In: Andersen P, Morris RM, Amaral D, Bliss T, O’Keefe J, editors. The Hippocampus Book. New York: Oxford University Press; 2007. p. 581–714.

    Google Scholar 

  78. O’Keefe J, Nadel L. The hippocampus as a cognitive map. New York: Oxford University Press; 1978.

    Google Scholar 

  79. O’Keefe J. Hippocampal neurophysiology in the behaving animal. In: Morris RM, Amaral D, Bliss T, O’Keefe J, editors. The Hippocampus Book Andersen P. New York: Oxford University Press; 2007. p. 475–548.

    Google Scholar 

  80. Morris RG, et al. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297:681–3.

    Article  CAS  PubMed  Google Scholar 

  81. Morris RG, et al. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986;319:774–6.

    Article  CAS  PubMed  Google Scholar 

  82. McEchron MD, et al. Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. Hippocampus. 1998;8:638–46.

    Article  CAS  PubMed  Google Scholar 

  83. Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell. 1996;87:1327–38.

    Article  CAS  PubMed  Google Scholar 

  84. Huerta PT, et al. Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron. 2000;25:473–80.

    Article  CAS  PubMed  Google Scholar 

  85. Chang EH, et al. Selective impairment of spatial cognition caused by autoantibodies to the N-methyl-d-aspartate receptor. EBioMedicine. 2015;2:755–64.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chang EH, Frattini SA, Robbiati S, Huerta PT. Construction of microdrive arrays for chronic neural recordings in awake behaving mice. J Vis Exp. 2013;77:e50470. doi:10.3791/50470.

    PubMed  Google Scholar 

  87. Faust TW, Robbiati S, Huerta TS, Huerta PT. Dynamic NMDAR-mediated properties of place cells during the object place memory task. Front Behav Neurosci. 2013;7:202.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Eric H. Chang, Thomas W. Faust, Sergio Robbiati, Stephen A. Frattini, Toby Klein, and all the members of the LOINN (Laboratory of Immune and Neural Networks) for their help in these studies. This research was funded by NIH Grant P01-AI073693 (to B.D., P.H., M.M., B.V.) and NIH Grant P01-AI102852 (to B.D., P.H., K.T., B.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio T. Huerta.

Additional information

Patricio T. Huerta, Elizabeth L. Gibson, Carson Rey and Tomás S. Huerta have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huerta, P.T., Gibson, E.L., Rey, C. et al. Integrative neuroscience approach to neuropsychiatric lupus. Immunol Res 63, 11–17 (2015). https://doi.org/10.1007/s12026-015-8713-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8713-6

Keywords

Navigation