Skip to main content

Advertisement

Log in

Natural killer cell receptors: alterations and therapeutic targeting in malignancies

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Numerous newly identified activating and inhibitory NK cell receptors and their engagement by cognate ligands on target tumor cells regulate NK cell antitumor activity. Alterations in NK cell receptor expression and signaling underlie diminished cytotoxic NK cell function. Cytokines, IFN-α, IL-2, IL-12, IL-15 and IL-18, applied systemically and for ex vivo activation and expansion of NK cells have improved NK cell antitumor activity by increasing the expression of NK cell activating receptors and by inducing cytotoxic effector molecules. Moreover, it has been recognized that classical and novel pharmacological agents upregulate cognate ligands for activating receptors on tumor cells and provide better NK cell antitumor response. Some other immunotherapeutic approaches in cancer in the setting of donor-recipient KIR/HLA mismatch have evolved with the aim to potentiate NK cell activity in allogeneic hematopoietic stem cell transplantation that lead to beneficial graft vs. tumor effect. Therefore, better understanding of NK cell activating and inhibitory receptor biology is needed to assist in developing novel approaches to effectively manipulate NK cells and create effective NK cell-based immunotherapy for treatment of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Cortez VS, Robinette ML, Colonna M. Innate lymphoid cells: new insights into function and development. Curr Opin Immunol. 2015;32:71–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Freud AG, Yokohama A, Becknell B, Lee MT, Mao HC, Ferketich AK, Caligiuri MA. Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med. 2006;203(4):1033–43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Lopez-Vergès S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood. 2010;116(19):3865–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Jaeger BN, Vivier E. When NK cells overcome their lack of education. J Clin Invest. 2012;122(9):3053–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Stojanovic A, Correia MP, Cerwenka A. Shaping of NK cell responses by the tumor microenvironment. Cancer Microenviron. 2013;6(2):135–46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Höglund P, Brodin P. Current perspectives of natural killer cell education by MHC class I molecules. Nat Rev Immunol. 2010;10(10):724–34.

    Article  PubMed  CAS  Google Scholar 

  8. Farag SS, Caligiuri MA. Human natural killer cell development and biology. Blood Rev. 2006;20(3):123–37.

    Article  PubMed  CAS  Google Scholar 

  9. Campbell KS, Purdy AK. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology. 2011;132(3):315–25.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Konjević G, Schlesinger B, Cheng L, Olsen KJ, Podack ER, Spužić I. Analysis of perforin expression in human peripheral blood lymphocytes, CD56+ natural killer cell subsets and its induction by interleukin-2. Immunol Invest. 1995;24(3):499–507.

    Article  PubMed  Google Scholar 

  11. Konjević G, Jurišić V, Jović V, Vuletić A, Mirjačić Martinović K, Radenković S, Spužić I. Investigation of NK cell function and their modulation in different malignancies. Immunol Res. 2012;52(1–2):139–56.

    Article  PubMed  CAS  Google Scholar 

  12. Podack ER, Dennert G. Assembly of two types of tubules with putative cytolytic function by cloned natural killer cells. Nature. 1983;302(5907):442–5.

    Article  PubMed  CAS  Google Scholar 

  13. Khar A, Varalakshmi C, Pardhasaradhi BV, Mubarak Ali A, Kumari AL. Depletion of the natural killer cell population in the peritoneum by AK-5 tumor cell overexpressing fas-ligand: a mechanism of immune evasion. Cell Immunol. 1998;189(2):85–91.

    Article  PubMed  CAS  Google Scholar 

  14. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, Tyan D, et al. Human diversity in killer cell inhibitory receptor genes. Immunity. 1997;7(6):753–63.

    Article  PubMed  CAS  Google Scholar 

  16. Guia S, Jaeger BN, Piatek S, Mailfert S, Trombik T, Fenis A, Chevrier N, et al. Confinement of activating receptors at the plasma membrane controls natural killer cell tolerance. Sci Signal. 2011;4(167):ra21.

    Article  PubMed  CAS  Google Scholar 

  17. Purdy AK, Campbell KS. Natural killer cells and cancer: regulation by the killer cell Ig-like receptors (KIR). Cancer Biol Ther. 2009;8(32):2211–20.

    PubMed  Google Scholar 

  18. Boyton RJ, Altmann DM. Natural killer cells, killer immunoglobulin-like receptors and human leucocyte antigen class I in disease. Clin Exp Immunol. 2007;149(1):1–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Naumova E, Mihaylova A, Ivanova M, Mihailova S. Impact of KIR/HLA ligand combinations on immune responses in malignant melanoma. Cancer Immunol Immunother. 2007;56(1):95–100.

    Article  PubMed  CAS  Google Scholar 

  20. Campillo JA, Martínez-Escribano JA, Moya-Quiles MR, Marín LA, Muro M, Guerra N, Parrado A, et al. Natural killer receptors on CD8 T cells and natural killer cells from different HLA-C phenotypes in melanoma patients. Clin Cancer Res. 2006;12(16):4822–31.

    Article  PubMed  CAS  Google Scholar 

  21. Peng YP, Zhu Y, Zhang JJ, Xu ZK, Qian ZY, Dai CC, Jiang KR, et al. Comprehensive analysis of the percentage of surface receptors and cytotoxic granules positive natural killer cells in patients with pancreatic cancer, gastric cancer, and colorectal cancer. J Transl Med. 2013;11:262.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Konjević G, Mirjacić Martinović K, Jurisić V, Babović N, Spuzić I. Biomarkers of suppressed natural killer (NK) cell function in metastatic melanoma: decreased NKG2D and increased CD158a receptors on CD3CD16+ NK cells. Biomarkers. 2009;14(4):258–70.

    Article  PubMed  CAS  Google Scholar 

  23. Varker KA, Terrell CE, Welt M, Suleiman S, Thornton L, Andersen BL, Carson WE 3rd. Impaired natural killer cell lysis in breast cancer patients with high levels of psychological stress is associated with altered expression of killer immunoglobulin-like receptors. J Surg Res. 2007;139(1):36–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Al Omar SY, Marshall E, Middleton D, Christmas SE. Increased killer immunoglobulin-like receptor expression and functional defects in natural killer cells in lung cancer. Immunology. 2011;133(1):94–104.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Mirjačić Martinović K, Konjević G, Babović N, Inić M. The stage dependent changes in NK cell activity and the expression of activating and inhibitory NK cell receptors in melanoma patients. J Surg Res. 2011;171(2):637–49.

    Article  PubMed  CAS  Google Scholar 

  26. Vuletić A, Jurišić V, Jovanić I, Milovanović Z, Nikolić S, Konjević G. Distribution of several activating and inhibitory receptors on CD3(−)CD56(+) NK cells in regional lymph nodes of melanoma patients. J Surg Res. 2013;183(2):860–8.

    Article  PubMed  CAS  Google Scholar 

  27. Stern-Ginossar N, Mandelboim O. An integrated view of the regulation of NKG2D ligands. Immunology. 2009;128(1):1–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. López-Larrea C, Suárez-Alvarez B, López-Soto A, López-Vázquez A, Gonzalez S. The NKG2D receptor: sensing stressed cells. Trends Mol Med. 2008;14(4):179–89.

    Article  PubMed  CAS  Google Scholar 

  29. Zafirova B, Wensveen FM, Gulin M, Polić B. Regulation of immune cell function and differentiation by the NKG2D receptor. Cell Mol Life Sci. 2011;68(21):3519–29.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH. An activating immunoreceptor complex formed by NKG2D and DAP10. Science. 1999;285(5428):730–2.

    Article  PubMed  CAS  Google Scholar 

  31. Hayakawa Y, Smyth MJ. NKG2D and cytotoxic effector function in tumor immune surveillance. Semin Immunol. 2006;18:176–85.

    Article  PubMed  CAS  Google Scholar 

  32. Mamessier E, Sylvain A, Bertucci F, Castellano R, Finetti P, Houvenaeghel G, Charaffe-Jaufret E, et al. Human breast tumor cells induce self-tolerance mechanisms to avoid NKG2D-mediated and DNAM-mediated NK cell recognition. Cancer Res. 2011;71(21):6621–32.

    Article  PubMed  CAS  Google Scholar 

  33. Garcia-Iglesias T, Del Toro-Arreola A, Albarran-Somoza B, Del Toro-Arreola S, Sanchez-Hernandez PE, Ramirez-Dueñas MG, Balderas-Peña LM. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer. 2009;9:186.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. de Kruijf EM, Sajet A, van Nes JG, Putter H, Smit VT, Eagle RA, Jafferji I, et al. NKG2D ligand tumor expression and association with clinical outcome in early breast cancer patients: an observational study. BMC Cancer. 2012;12:24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Shen Y, Lu C, Tian W, Wang L, Cui B, Jiao Y, Ma C. Possible association of decreased NKG2D expression levels and suppression of the activity of natural killer cells in patients with colorectal cancer. Int J Oncol. 2012;40(4):1285–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  36. He S, Yin T, Li D, Gao X, Wan Y, Ma X, Ye T, et al. Enhanced interaction between natural killer cells and lung cancer cells: involvement in gefitinib-mediated immunoregulation. J Transl Med. 2013;11:186.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Zhang Z, Su T, He L, Wang H, Ji G, Liu X, Zhang Y, Dong G. Identification and functional analysis of ligands for natural killer cell activating receptors in colon carcinoma. Tohoku J Exp Med. 2012;226(1):59–68.

    Article  PubMed  CAS  Google Scholar 

  38. Schiavoni G, Gabriele L, Mattei F. The tumor microenvironment: a pitch for multiple players. Front Oncol. 2013;3:90.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Chitadze G, Bhat J, Lettau M, Janssen O, Kabelitz D. Generation of soluble NKG2D ligands: proteolytic cleavage, exosome secretion and functional implications. Scand J Immunol. 2013;78(2):120–9.

    Article  PubMed  CAS  Google Scholar 

  40. Konjević G, Mirjacić Martinović K, Vuletić A, Jurisić V, Spuzić I. Distribution of several activating and inhibitory receptors on CD3CD16+ NK cells and their correlation with NK cell function in healthy individuals. J Membr Biol. 2009;230(3):113–23.

    Article  PubMed  CAS  Google Scholar 

  41. Konjević G, Mirjacić Martinović K, Vuletić A, Jović V, Jurisić V, Babović N, Spuzić I. Low expression of CD161 and NKG2D activating NK receptor is associated with impaired NK cell cytotoxicity in metastatic melanoma patients. Clin Exp Metastasis. 2007;24(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  42. Delahaye NF, Rusakiewicz S, Martins I, Menard C, Roux S, Lyonnet L, Paul P, et al. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat Med. 2011;17(6):700–7.

    Article  PubMed  CAS  Google Scholar 

  43. Narni-Mancinelli E, Jaeger BN, Bernat C, Fenis A, Kung S, De Gassart A, Mahmood S, et al. Tuning of natural killer cell reactivity by NKp46 and Helios calibrates T cell responses. Science. 2012;335(6066):344–8.

    Article  PubMed  CAS  Google Scholar 

  44. Rosental B, Brusilovsky M, Hadad U, Oz D, Appel MY, Afergan F, Yossef R, et al. Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. J Immunol. 2011;187(11):5693–702.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Hudspeth K, Silva-Santos B, Mavilio D. Natural cytotoxicity receptors: broader expression patterns and functions in innate and adaptive immune cells. Front Immunol. 2013;4:69.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Pietra G, Manzini C, Rivara S, Vitale M, Cantoni C, Petretto A, Balsamo M, et al. Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. Cancer Res. 2012;72(6):1407–15.

    Article  PubMed  CAS  Google Scholar 

  47. Fiegler N, Textor S, Arnold A, Rölle A, Oehme I, Breuhahn K, Moldenhauer G, et al. Downregulation of the activating NKp30 ligand B7–H6 by HDAC inhibitors impairs tumor cell recognition by NK cells. Blood. 2013;122(5):684–93.

    Article  PubMed  CAS  Google Scholar 

  48. Reiners KS, Topolar D, Henke A, Simhadri VR, Kessler J, Sauer M, Bessler M, et al. Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity. Blood. 2013;121(18):3658–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG, Arcos MJ, Bengochea ML, et al. Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands. Cancer Immunol Immunother. 2011;60(8):1195–205.

    Article  PubMed  CAS  Google Scholar 

  50. Rosental B, Hadad U, Brusilovsky M, Campbell KS, Porgador A. A novel mechanism for cancer cells to evade immune attack by NK cells: the interaction between NKp44 and proliferating cell nuclear antigen. Oncoimmunology. 2012;1(4):572–4.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH. Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol. 2011;89(2):216–24.

    Article  PubMed  Google Scholar 

  52. Lakshmikanth T, Burke S, Ali TH, Kimpfler S, Ursini F, Ruggeri L, Capanni M, et al. NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest. 2009;119(5):1251–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Morgado S, Sanchez-Correa B, Casado JG, Duran E, Gayoso I, Labella F, Solana R, Tarazona R. NK cell recognition and killing of melanoma cells is controlled by multiple activating receptor-ligand interactions. J Innate Immun. 2011;3(4):365–73.

    Article  PubMed  CAS  Google Scholar 

  54. Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S, Dondero A, Lazzeri E, et al. Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood. 2006;107(5):2030–6.

    Article  PubMed  CAS  Google Scholar 

  55. Morisaki T, Onishi H, Katano M. Cancer immunotherapy using NKG2D and DNAM-1 systems. Anticancer Res. 2012;32(6):2241–7.

    PubMed  CAS  Google Scholar 

  56. Mirjačić Martinović KM, Babović NLJ, Džodić RR, Jurišić VB, Tanić NT, Konjević GM. Decreased expression of NKG2D, NKp46, DNAM-1 receptors, and intracellular perforin and STAT-1 effector molecules in NK cells and their dim and bright subsets in metastatic melanoma patients. Melanoma Res. 2014;24(4):295–304.

    Article  PubMed  CAS  Google Scholar 

  57. Warren HS, Kinnear BF. Quantitative analysis of the effect of CD16 ligation on human NK cell proliferation. J Immunol. 1999;162(2):735–42.

    PubMed  CAS  Google Scholar 

  58. Nagler A, Lanier LL, Cwirla S, Phillips JH. Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol. 1989;143(10):3183–91.

    PubMed  CAS  Google Scholar 

  59. Lanier LL. Natural killer cell receptor signaling. Curr Opin Immunol. 2003;15(3):308–14.

    Article  PubMed  CAS  Google Scholar 

  60. Vivier E, Nunes JA, Vely F. Natural killer cell signaling pathways. Science. 2004;306(5701):1517–9.

    Article  PubMed  CAS  Google Scholar 

  61. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiuri MA. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood. 2001;97(10):3146–51.

    Article  PubMed  CAS  Google Scholar 

  62. Gryzwacz B, Kataria N, Verneris MR. CD56dimCD16+ NK cells downregulate CD16 following target cell induced activation of matrix metaloprteinases. Letter to the editor. Leukemia. 2007;21(2):356–9.

    Article  Google Scholar 

  63. Romee R, Foley B, Lenvik T, Wang Y, Zhang B, Ankarlo D, Luo X, et al. NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood. 2013;121(18):3599–608.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Braud VM, Allan DS, O’Callaghan CA, Söderström K, D’Andrea A, Ogg GS, Lazetic S, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998;391(6669):795–9.

    Article  PubMed  CAS  Google Scholar 

  65. Iwaszko M, Bogunia-Kubik K. Clinical significance of the HLA-E and CD94/NKG2 interaction. Arch Immunol Ther Exp (Warsz). 2011;59(5):353–67.

    Article  CAS  Google Scholar 

  66. Michaelsson J, Teixeira de Matos C, Achour A, Lanier LL, Karre K, Soderstrom K. A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med. 2002;196(11):1403–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Bossard C, Bézieau S, Matysiak-Budnik T, Volteau C, Laboisse CL, Jotereau F, Mosnier JF. HLA-E/β2 microglobulin overexpression in colorectal cancer is associated with recruitment of inhibitory immune cells and tumor progression. Int J Cancer. 2012;131(4):855–63.

    Article  PubMed  CAS  Google Scholar 

  68. Colonna M, Nakajima H, Cella M. Inhibitory and activating receptors involved in immune surveillance by human NK and myeloid cells. J Leukoc Biol. 1999;66(5):718–22.

    PubMed  CAS  Google Scholar 

  69. Heidenreich S, Zu Eulenburg C, Hildebrandt Y, Stübig T, Sierich H, Badbaran A, Eiermann TH, et al. Impact of the NK cell receptor LIR-1 (ILT-2/CD85j/LILRB1) on cytotoxicity against multiple myeloma. Clin Dev Immunol. 2012;2012:652130.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Kirkham CL, Carlyle JR. Complexity and diversity of the NKR-P1: Clr (Klrb1:Clec2) recognition systems. Front Immunol. 2014;5:214.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Montaldo E, Vitale C, Cottalasso F, Conte R, Glatzer T, Ambrosini P, Moretta L, Mingari MC. Human NK cells at early stages of differentiation produce CXCL8 and express CD161 molecule that functions as an activating receptor. Blood. 2012;119(17):3987–96.

    Article  PubMed  CAS  Google Scholar 

  72. Azzoni L, Zatsepina O, Abebe B, Bennett IM, Kanakaraj P, Perussia B. Differential transcriptional regulation of CD161 and a novel gene, 197/15a, by IL-2, IL-15, and IL-12 in NK and T cells. J Immunol. 1998;161(7):3493–500.

    PubMed  CAS  Google Scholar 

  73. Lanier LL, Chang C, Phillips JH. Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J Immunol. 1994;153(6):2417–28.

    PubMed  CAS  Google Scholar 

  74. Aldemir H, Prod’homme V, Dumaurier MJ, Retiere C, Poupon G, Cazareth J, Bihl F, Braud VM. Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. J Immunol. 2005;175(12):7791–5.

    Article  PubMed  CAS  Google Scholar 

  75. Rosen DB, Bettadapura J, Alsharifi M, Mathew PA, Warren HS, Lanier LL. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol. 2005;175(12):7796–9.

    Article  PubMed  CAS  Google Scholar 

  76. Ryan JC, Seaman WE. Divergent functions of lectin-like receptors on NK cells. Immunol Rev. 1997;155:79–89.

    Article  PubMed  CAS  Google Scholar 

  77. Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 2013;10(3):230–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Moretta L, Montaldo E, Vacca P, Del Zotto G, Moretta F, Merli P, Locatelli F, Mingari MC. Human natural killer cells: origin, receptors, function, and clinical applications. Int Arch Allergy Immunol. 2014;164(4):253–64.

    Article  PubMed  CAS  Google Scholar 

  79. Velardi A, Ruggeri L, Moretta A, Moretta L. NK cells: a lesson from mismatched hematopoietic transplantation. Trends Immunol. 2002;23(9):438–44.

    Article  PubMed  CAS  Google Scholar 

  80. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097–100.

    Article  PubMed  CAS  Google Scholar 

  81. Ruggeri L, Capanni M, Casucci M, Volpi I, Tosti A, Perruccio K, Urbani E, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood. 1999;94(1):333–9.

    PubMed  CAS  Google Scholar 

  82. Miller JS, Cooley S, Parham P, Farag SS, Verneris MR, McQueen KL, Guethlein LA, et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood. 2007;109(11):5058–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Hsu KC, Pinto-Agnello C, Gooley T, Malkki M, Dupont B, Petersdorf EW. Hematopoietic stem cell transplantation: killer immunoglobulin-like receptor component. Tissue Antigens. 2007;69:42–5.

    Article  PubMed  Google Scholar 

  84. McQueen KL, Dorighi KM, Guethlein LA, Wong R, Sanjanwala B, Parham P. Donor-recipient combinations of group A and B KIR haplotypes and HLA class I ligand affect the outcome of HLA-matched, sibling donor hematopoietic cell transplantation. Hum Immunol. 2007;68(5):309–23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Venstrom JM, Pittari G, Gooley TA, Chewning JH, Spellman S, Haagenson M, Gallagher MM, et al. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N Engl J Med. 2012;367(9):805–16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Benson DM Jr, Caligiuri MA. Killer immunoglobulin-like receptors and tumor immunity. Cancer Immunol Res. 2014;2(2):99–104.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Hallett WH, Ames E, Alvarez M, Barao I, Taylor PA, Blazar BR, Murphy WJ. Combination therapy using IL-2 and anti-CD25 results in augmented natural killer cell-mediated antitumor responses. Biol Blood Marrow Transplant. 2008;14(10):1088–99.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Ames E, Murphy WJ. Advantages and clinical applications of natural killer cells in cancer immunotherapy. Cancer Immunol Immunother. 2014;63(1):21–8.

    Article  PubMed  Google Scholar 

  89. Konjević G, Mirjačić Martinović K, Vuletić A, Radenković S. Novel aspects of in vitro IL-2 or IFN-α enhanced NK cytotoxicity of healthy individuals based on NKG2D and CD161 NK cell receptor induction. Biomed Pharmacother. 2010;64(10):663–71.

    Article  PubMed  CAS  Google Scholar 

  90. Zwirner NW, Domaica CI. Cytokine regulation of natural killer cell effector functions. BioFactors. 2010;36(4):274–88.

    Article  PubMed  CAS  Google Scholar 

  91. Vuletić AM, Jovanić IP, Jurišić VB, Milovanović ZM, Nikolić SS, Tanić NT, Konjević GM. In-vitro activation of natural killer cells from regional lymph nodes of melanoma patients with interleukin-2 and interleukin-15. Melanoma Res. 2015;25(1):22–34.

    Article  PubMed  CAS  Google Scholar 

  92. Park YP, Choi SC, Kiesler P, Gil-Krzewska A, Borrego F, Weck J, Krzewski K, Coligan JE. Complex regulation of human NKG2D-DAP10 cell surface expression: opposing roles of the γc cytokines and TGF-β1. Blood. 2011;118(11):3019–27.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Konjević G, Jović V, Radulović S, Jelić S, Dzodić R, Spuzić I. Therapeutic implications of the kinetics of immunomodulation during single or combined treatment of melanoma patients with dacarbazine and interferon-alpha. Neoplasma. 2001;48(3):175–81.

    PubMed  Google Scholar 

  94. Konjević G, Jović V, Vuletić A, Radulović S, Jelić S, Spuzić I. CD69 on CD56+ NK cells and response to chemoimmunotherapy in metastatic melanoma. Eur J Clin Invest. 2007;37(11):887–96.

    Article  PubMed  CAS  Google Scholar 

  95. Ni J, Miller M, Stojanovic A, Garbi N, Cerwenka A. Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors. J Exp Med. 2012;209(13):2351–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Leong JW, Chase JM, Romee R, Schneider SE, Sullivan RP, Cooper MA, Fehniger TA. Preactivation with IL-12, IL-15, and IL-18 induces CD25 and a functional high-affinity IL-2 receptor on human cytokine-induced memory-like natural killer cells. Biol Blood Marrow Transplant. 2014;20(4):463–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Konjević G, Spuzić I. Stage dependence of NK cell activity and its modulation by interleukin 2 in patients with breast cancer. Neoplasma. 1993;40(2):81–5.

    PubMed  Google Scholar 

  98. Konjević G, Mirjačić Martinović K, Vuletić A, Babović N. In-vitro IL-2 or IFN-α-induced NKG2D and CD161 NK cell receptor expression indicates novel aspects of NK cell activation in metastatic melanoma patients. Melanoma Res. 2010;20(6):459–67.

    Article  PubMed  CAS  Google Scholar 

  99. Mirjačić Martinović K, Babović N, Džodić R, Jurišić V, Matković S, Konjević G. Favorable in vitro effects of combined IL-12 and IL-18 treatment on NK cell cytotoxicity and CD25 receptor expression in metastatic melanoma patients. J Transl Med. 2015;13:120.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Morris JC, Tan AR, Olencki TE, Shapiro GI, Dezube BJ, Reiss M, Hsu FJ, et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS ONE. 2014;9:e90353.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Zitvogel L, Tesniere A, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of anticancer chemotherapy. Bull Acad Natl Med. 2008;192(7):1469–87.

    PubMed  Google Scholar 

  102. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.

    Article  PubMed  CAS  Google Scholar 

  103. Mentlik James A, Cohen AD, Campbell KS. Combination immune therapies to enhance anti-tumor responses by NK cells. Front Immunol. 2013;4:481.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  104. Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A, Hayashi N. Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology. 2010;51(4):1264–73.

    Article  PubMed  CAS  Google Scholar 

  105. Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 2013;19(19):5300–9.

    Article  PubMed  CAS  Google Scholar 

  106. Benson DM Jr, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B, Baiocchi RA, et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood. 2010;116(13):2286–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Sentman CL, Meehan KR. NKG2D CARs as cell therapy for cancer. Cancer J. 2014;20:156–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Seidel UJ, Schlegel P, Lang P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front Immunol. 2013;4:76.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Campbell KS, Hasegawa J. Natural killer cell biology: an update and future directions. J Allergy Clin Immunol. 2013;132(3):536–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Bryceson YT, March ME, Ljunggren HG, Long EO. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood. 2006;107(1):159–66.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants of the Ministry of Education, Science and Technology of the Republic of Serbia: Grant Number 41031 and Grant Number 175056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Konjević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konjević, G., Vuletić, A. & Mirjačić Martinović, K. Natural killer cell receptors: alterations and therapeutic targeting in malignancies. Immunol Res 64, 25–35 (2016). https://doi.org/10.1007/s12026-015-8695-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8695-4

Keywords

Navigation