Skip to main content

Advertisement

Log in

Naringin rescued the TNF-α-induced inhibition of osteogenesis of bone marrow-derived mesenchymal stem cells by depressing the activation of NF-кB signaling pathway

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Naringin exhibits antiinflammatory activity and is shown to induce bone formation. Yet the impact of naringin on inflammation-affected bone marrow-derived mesenchymal stem cell (BM-MSC), a promising tool for the regenerative treatment of bone injury, remained to be investigated. We first cultured and characterized the BM-MSCs in vitro and observe the effects of treatments of TNF-α, naringin, or the combination of both on osteogenic differentiation. TNF-α administered at the concentration of 20 ng/ml results in significant reductions in MSC’s cell survival, alkaline phosphatase activity and expressions of two osteogenic genes, Runx2 and Osx. Simultaneous treatment of both TNF-α and naringin is able to rescue such reductions. Further mechanistic studies indicate that TNF-α treatment activates the NF-кB signaling pathway, evidenced by elevated p-IкBα level as well as the increased nuclear fraction of NF-кB subunit, p65. Finally, treatment with both TNF-α and naringin decreases expressions of p-IкBα and nuclear p65, and thus represses NF-кB pathway activated by sole TNF-α treatment. Our findings provide a molecular basis by which naringin restores the TNF-α-induced damage in MSCs and provide novel insights into the application of naringin in the MSC-based treatments for inflammation-induced bone injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kwan Tat S, Padrines M, Theoleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004;15(1):49–60.

    Article  PubMed  Google Scholar 

  2. Osborn L, Kunkel S, Nabel GJ. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci USA. 1989;86(7):2336–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kato K, Nakane A, Minagawa T, Kasai N, Yamamoto K, Sato N, et al. Human tumor necrosis factor increases the resistance against Listeria infection in mice. Med Microbiol Immunol. 1989;178(6):337–46.

    Article  CAS  PubMed  Google Scholar 

  4. Hauser T, Frei K, Zinkernagel RM, Leist TP. Role of tumor necrosis factor in Listeria resistance of nude mice. Med Microbiol Immunol. 1990;179(2):95–104.

    Article  CAS  PubMed  Google Scholar 

  5. Blanchard DK, Friedman H, Klein TW, Djeu JY. Induction of interferon-gamma and tumor necrosis factor by Legionella pneumophila: augmentation of human neutrophil bactericidal activity. J Leukoc Biol. 1989;45(6):538–45.

    CAS  PubMed  Google Scholar 

  6. Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: What have we learned? Annu Rev Immunol. 2001;19:163–96. doi:10.1146/annurev.immunol.19.1.163.

    Article  CAS  PubMed  Google Scholar 

  7. Hommes DW, van de Heisteeg BH, van der Spek M, Bartelsman JF, van Deventer SJ. Infliximab treatment for Crohn’s disease: one-year experience in a Dutch Academic Hospital. Inflamm Bowel Dis. 2002;8(2):81–6.

    Article  PubMed  Google Scholar 

  8. McLean RR. Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep. 2009;7(4):134–9.

    Article  PubMed  Google Scholar 

  9. Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J. TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci USA. 2011;108(4):1585–90. doi:10.1073/pnas.1018501108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Tocci A, Forte L. Mesenchymal stem cell: use and perspectives. Hematol J. 2003;4(2):92–6. doi:10.1038/sj.thj.6200232.

    Article  PubMed  Google Scholar 

  11. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669–75. doi:10.1182/blood-2003-05-1670.

    Article  CAS  PubMed  Google Scholar 

  12. Chang YJ, Shih DT, Tseng CP, Hsieh TB, Lee DC, Hwang SM. Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells. 2006;24(3):679–85. doi:10.1634/stemcells.2004-0308.

    Article  CAS  PubMed  Google Scholar 

  13. Wang EA, Israel DI, Kelly S, Luxenberg DP. Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors. 1993;9(1):57–71.

    Article  CAS  PubMed  Google Scholar 

  14. Yu S, Zhu K, Lai Y, Zhao Z, Fan J, Im HJ, et al. atf4 promotes beta-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells. Int J Biol Sci. 2013;9(3):256–66. doi:10.7150/ijbs.5898.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Wong RW, Rabie B, Bendeus M, Hagg U. The effects of Rhizoma Curculiginis and Rhizoma Drynariae extracts on bones. Chin Med. 2007;2:13. doi:10.1186/1749-8546-2-13.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Shin YW, Bok SH, Jeong TS, Bae KH, Jeoung NH, Choi MS, et al. Hypocholesterolemic effect of naringin associated with hepatic cholesterol regulating enzyme changes in rats. Int J Vitam Nutr Res. 1999;69(5):341–7.

    Article  CAS  PubMed  Google Scholar 

  17. Mahmoud AM, Ashour MB, Abdel-Moneim A, Ahmed OM. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complic. 2012;26(6):483–90. doi:10.1016/j.jdiacomp.2012.06.001.

    Article  Google Scholar 

  18. Wong KC, Pang WY, Wang XL, Mok SK, Lai WP, Chow HK, et al. Drynaria fortunei-derived total flavonoid fraction and isolated compounds exert oestrogen-like protective effects in bone. Br J Nutr. 2013;110(3):475–85. doi:10.1017/S0007114512005405.

    Article  CAS  PubMed  Google Scholar 

  19. Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, et al. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology. 2000;141(11):3956–64. doi:10.1210/endo.141.11.7739.

    CAS  PubMed  Google Scholar 

  20. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  21. Akiyama K, You YO, Yamaza T, Chen C, Tang L, Jin Y, et al. Characterization of bone marrow derived mesenchymal stem cells in suspension. Stem Cell Res Ther. 2012;3(5):40. doi:10.1186/scrt131.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Peng CF, Han YL, Jie D, Yan CH, Jian K, Bo L, et al. Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-alpha-induced apoptosis via NF-kappaB in mesenchymal stem cells. Biochem Biophys Res Commun. 2011;406(4):601–7. doi:10.1016/j.bbrc.2011.02.100.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang P, Dai KR, Yan SG, Yan WQ, Zhang C, Chen DQ, et al. Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell. Eur J Pharmacol. 2009;607(1–3):1–5.

    Article  CAS  PubMed  Google Scholar 

  24. Butler DL, Gooch C, Kinneberg KR, Boivin GP, Galloway MT, Nirmalanandhan VS, et al. The use of mesenchymal stem cells in collagen-based scaffolds for tissue-engineered repair of tendons. Nat Protoc. 2010;5(5):849–63. doi:10.1038/nprot.2010.14.

    Article  CAS  PubMed  Google Scholar 

  25. Jimi E, Aoki K, Saito H, D’Acquisto F, May MJ, Nakamura I, et al. Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med. 2004;10(6):617–24. doi:10.1038/nm1054.

    Article  CAS  PubMed  Google Scholar 

  26. Pfeffer K. Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev. 2003;14(3–4):185–91.

    Article  CAS  PubMed  Google Scholar 

  27. Endres R, Luz A, Schulze H, Neubauer H, Futterer A, Holland SM, et al. Listeriosis in p47(phox-/-) and TRp55-/- mice: protection despite absence of ROI and susceptibility despite presence of RNI. Immunity. 1997;7(3):419–32.

    Article  CAS  PubMed  Google Scholar 

  28. Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell. 2004;6(3):203–8. doi:10.1016/j.ccr.2004.09.003.

    Article  CAS  PubMed  Google Scholar 

  29. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res. 2000;15(1):2–12. doi:10.1080/14041040009362546.

    Article  CAS  PubMed  Google Scholar 

  30. Roggia C, Tamone C, Cenci S, Pacifici R, Isaia GC. Role of TNF-alpha producing T-cells in bone loss induced by estrogen deficiency. Minerva Med. 2004;95(2):125–32.

    CAS  PubMed  Google Scholar 

  31. Chen X, Hu C, Wang G, Li L, Kong X, Ding Y, et al. Nuclear factor-kappaB modulates osteogenesis of periodontal ligament stem cells through competition with beta-catenin signaling in inflammatory microenvironments. Cell Death Dis. 2013;4:e510. doi:10.1038/cddis.2013.14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kong X, Liu Y, Ye R, Zhu B, Zhu Y, Liu X, et al. GSK3beta is a checkpoint for TNF-alpha-mediated impaired osteogenic differentiation of mesenchymal stem cells in inflammatory microenvironments. Biochim Biophys Acta. 2013;1830(11):5119–29. doi:10.1016/j.bbagen.2013.07.027.

    Article  CAS  PubMed  Google Scholar 

  33. Fuhr U, Kummert AL. The fate of naringin in humans: A key to grapefruit juice–drug interactions? Clin Pharmacol Ther. 1995;58(4):365–73. doi:10.1016/0009-9236(95)90048-9.

    Article  CAS  PubMed  Google Scholar 

  34. Wu JB, Fong YC, Tsai HY, Chen YF, Tsuzuki M, Tang CH. Naringin-induced bone morphogenetic protein-2 expression via PI3 K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts. Eur J Pharmacol. 2008;588(2–3):333–41. doi:10.1016/j.ejphar.2008.04.030.

    Article  CAS  PubMed  Google Scholar 

  35. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286(5446):1946–9.

    Article  CAS  PubMed  Google Scholar 

  36. Wong RW, Rabie AB. Statin collagen grafts used to repair defects in the parietal bone of rabbits. Br J Oral Maxillofac Surg. 2003;41(4):244–8.

    Article  CAS  PubMed  Google Scholar 

  37. Sugiyama M, Kodama T, Konishi K, Abe K, Asami S, Oikawa S. Compactin and simvastatin, but not pravastatin, induce bone morphogenetic protein-2 in human osteosarcoma cells. Biochem Biophys Res Commun. 2000;271(3):688–92. doi:10.1006/bbrc.2000.2697.

    Article  CAS  PubMed  Google Scholar 

  38. Wong RW, Rabie AB. Effect of naringin on bone cells. J Orthop Res. 2006;24(11):2045–50. doi:10.1002/jor.20279.

    Article  CAS  PubMed  Google Scholar 

  39. Liu M, Li Y, Yang ST. Effects of naringin on the proliferation and osteogenic differentiation of human amniotic fluid-derived stem cells. J Tissue Eng Regen Med. 2014;. doi:10.1002/term.1911.

    Google Scholar 

  40. Jain M, Parmar HS. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflamm Res. 2011;60(5):483–91. doi:10.1007/s00011-010-0295-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai municipal commission of health and family planning.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Chen.

Additional information

Xvhai Cao, Weilong Lin and Chengwei Liang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Lin, W., Liang, C. et al. Naringin rescued the TNF-α-induced inhibition of osteogenesis of bone marrow-derived mesenchymal stem cells by depressing the activation of NF-кB signaling pathway. Immunol Res 62, 357–367 (2015). https://doi.org/10.1007/s12026-015-8665-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8665-x

Keywords

Navigation