Immunologic Research

, Volume 61, Issue 1–2, pp 11–23 | Cite as

The novel panel assay to define tumor-associated antigen-binding antibodies in patients with metastatic melanomas may have diagnostic value

  • Beatrix KotlanEmail author
  • Gabriella Liszkay
  • Miri Blank
  • Orsolya Csuka
  • Timea Balatoni
  • Laszlo Toth
  • Klara Eles
  • Szabolcs Horvath
  • Gyorgy Naszados
  • Judit Olasz
  • Balazs Banky
  • Jozsef Toth
  • Maria Godeny
  • Francesco M. Marincola
  • Miklos Kasler
  • Yehuda Shoenfeld


We aim to harness the natural humoral immune response by various technologies to get novel biomarkers. A complex antibody analysis in sera and in the tumor microenvironment leads to reveal tumor-specific antibodies. More strategies were introduced to select the most effective one to identify potential tumor antigen-binding capacity of the host. Epstein–Barr virus transformation and cloning with limiting dilution assay, magnetic cell sorting and antibody phage display with further methodological improvements were used in epithelial and neuroectodermal cancers. Column-purified sera of patient with melanoma were tested by immunofluorescence assay, while sera of further melanoma patients were processed for membrane-binding enzyme-linked immunosorbent assay. Some supernatants of selected B cell clones and purified antibodies showed considerable cancer cell binding capacity by immunofluorescence FACS analysis and confocal laser microscopy. Our native tumor cell membrane preparations helped to test soluble scFv and patients’ sera for tumor binder antibodies. A complex tumor immunological study was introduced for patients with melanoma (ethical permission: ETT TUKEB 16462-02/2010); peripheral blood (n = 57) and surgically removed primary or metastatic tumors (n = 44) were gathered and processed at cellular immunological level. The technological developments proved to be important steps forward to the next antibody profile analyses at DNA sequence level. Cancer cell binding of patient-derived antibodies and natural immunoglobulin preparations of pooled plasma product intravenous immunoglobulins support the importance of natural human antibodies. Important cancer diagnostics and novel anticancer strategies are going to be built on these tools.


Autoantibody Human antibody Tumor antigen Melanoma 



American Type Cell Collections


Epstein–Barr virus


Ganglioside 3 type disialylated glycosphingolipids


Enzyme-linked immunosorbent assay


Food and Drug Administration


Journal for ImmunoTherapy of Cancer


Harry J Loyd Charitable Trust


Human serum albumin


Invasive ductal carcinoma of the breast






Interferon alpha


Intracenous immunoglobulin


Limiting dilution assay


Magnetic cell sorting


Medullary breast carcinoma


2-(4,5-Dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide


Ministry of Human Resources in Hungary, Hungarian Medical Research Council


Nodular melanoma




Peripheral blood mononuclear cells


Superficial spreading melanoma


Tumor-associated antigen


Tumor infiltrating B cells



We acknowledge the Harry J. Lloyd Charitable Trust Melanoma Research Award (2010) given to B. Kotlan, previous Fulbright No. 1206103 and OTKA T048933 Grants to B. Kotlan as well as her being supported by the Hungarian Cancer Foundation, Budapest, Hungary and a second Fulbright No. 1214104 Grant 2014.


  1. 1.
    Ascierto PA, Marincola FM. What have we learned from cancer immunotherapy in the last 3 years? J Transl Med. 2014;12(1):141. doi: 10.1186/1479-5876-12-141.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Fox BA, Schendel DJ, Butterfield LH, Aamdal S, Allison JP, Ascierto PA, et al. Defining the critical hurdles in cancer immunotherapy. J Transl Med. 2011;9(1):214. doi: 10.1186/1479-5876-9-214.
  3. 3.
    Shurin MR, Umansky V, Malyguine A, Hurwitz AA, Apte RN, Whiteside T, et al. Cellular and molecular pathways in the tumor immunoenvironment: 3rd Cancer Immunotherapy and Immunomonitoring (CITIM) meeting, 22–25 April 2013, Krakow, Poland. Cancer Immunol Immunother. 2014;63(1):73–80.Google Scholar
  4. 4.
    Pedicord VA, Montalvo W, Leiner IM, Allison JP. Single dose of anti-CTLA-4 enhances CD8+ T-cell memory formation, function, and maintenance. Proc Natl Acad Sci USA. 2011;108(1):266–71. doi: 10.1073/pnas.1016791108.
  5. 5.
    Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–8. doi: 10.4049/jimmunol.1490019.PubMedCrossRefGoogle Scholar
  6. 6.
    Witz IP. Yin-Yang activities and vicious cycles in the tumor microenvironment. Cancer Res. 2010;68:9–13.  Google Scholar
  7. 7.
    Ferrone S, Whiteside TL. Histocompatibility antigens, tumor microenvironment and escape mechanisms utilized by tumor cells, chap. 2. In: Yefenof E, editor. Innate and adaptive immunity in the tumor microenvironment. New York: Springer; 2008. p. 35–51.Google Scholar
  8. 8.
    Maman S, Witz IP. The metastatic microenvironment, chap. 2. In: Shurin MR, Umansky V, Shurin MR, Malyguine A, editors. The tumor immunoenvironment. Dordrecht: Springer; 2013. p. 15–38.Google Scholar
  9. 9.
    Malyguine A, Umansky V, Shurin MR. Role of the immunological environment in cancer initiation, development and progression, chap. 1. In: Shurin MR, Umansky V, Shurin MR, Malyguine A, editors. The tumor immunoenvironment. New York: Springer; 2011. p. 1–12.Google Scholar
  10. 10.
    Shurin MR, Lu L, Kalinski P, Stewart-Akels AM, Lotze MT. Th1/Th2 balance in cancer, transplantation and pregnancy. Springer Semin Immunpathol. 1999;21:339–59.Google Scholar
  11. 11.
    Hakomori S, Kannagi R. Glycosphingolipids as tumor-associated and differentiation markers. JNCI. 1983;71:231–51.Google Scholar
  12. 12.
    Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci USA. 2002;99:10231–3.Google Scholar
  13. 13.
    Varki NM, Varki A. Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest. 2007;87(9):851–7.Google Scholar
  14. 14.
    Ravindranath MH, Ravindranath DMH. Human antiganglioside autoantibodies, chap. 37. In: Shoenfeld Y, Gerschwin ME, Meroni PL, editors. Autoantibodies, 2nd ed. Amsterdam: Elsevier; 2007. p. 277–83.Google Scholar
  15. 15.
    Livingston PO, Wong GY, Adluri S, Tao Y, Padavan M, Parente R, et al. Improved survival in stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J Clin Oncol. 1994;12:1036–44.Google Scholar
  16. 16.
    Irie RF, Matsuki T, Morton DL. Human monoclonal antibody to ganglioside GM2 for melanoma. Lancet. 1989;1(8641):786–7.Google Scholar
  17. 17.
    Kotlan B, Simsa P, Teillaud JL, Fridman WH, Toth J, McKnight M, et al. Novel ganglioside antigen identified by B cells in human medullary breast carcinomas: the proof of principle concerning the tumor-infiltrating B lymphocytes. J Immunol. 2005;175:2278–85.Google Scholar
  18. 18.
    Daniotti JL, Vilcaes AA, Demichelis VT, Ruggiero FM, Rodriguez-Walker M. Glycosylation of glycolipids in cancer: basis for development of novel therapeutic approaches. Front Oncol. 2013;3:306–18. doi: 10.3389/fonc.2013.00306.
  19. 19.
    Ravindranath MH, Yesowitch P, Sumobay C, Morton D. Glycoimmunomics of human cancer: current concepts and future perspectives. Future Oncol. 2007;3:201–14.Google Scholar
  20. 20.
    Kotlan B, Gruel N, Zafrani B, Füredi G, Foldi J, Petranyi GG, et al. Immunoglobulin variable regions usage by B-lymphocytes infiltrating a human breast medullary carcinoma. Immunol Lett. 1999;65:143–51.Google Scholar
  21. 21.
    Conra K, Bachmann M. Autoantibodies. In: Shoenfeld Y, Gerschwin ME, Meroni PL, editors. Autoantibodies, summary 2/e. 2nd ed. Amsterdam: Elsevier; 2007. p. 423–35.Google Scholar
  22. 22.
    Vollmers HP, Brandlein S. Nature’s best weapons to fight cancer. Revival of human monoclonal IgM antibodies. Hum Antibodies. 2002;11:131–42.Google Scholar
  23. 23.
    Kotlan B, Toth J, McKnight M, Glassy MC. Characteristics of tumor gangliosides revealed by B cells infiltrating human breast carcinomas. Hum Antibodies. 2006;15(1, 2):9–13.Google Scholar
  24. 24.
    Sherer Y, Levy Y, Shoenfeld Y. IVIG in autoimmunity and cancer efficacy versus safety. Expert Opin Drug Saf. 2002;1:153–8.Google Scholar
  25. 25.
    Schwartz-Albiez R, Monteiro RC, Rodriguez M, Binder CJ, Shoenfeld Y. Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation. Clin Exp Immunol. 2009;158:43–50.Google Scholar
  26. 26.
    Kotlan B, Stroncek DF, Marincola FM. Intravenous immunoglobulin-based immunotherapy: an arsenal of possibilities for patients and science. Immunotherapy. 2009;1(6):995–1015. doi: 10.2217/imt.09.67.
  27. 27.
    Baharav E, Merimski O, Shoenfeld Y, Zigelman R, Gilbrud B, Yecheskel G, et al. Tyrosinase as an autoantigen in patients with vitiligo. Clin Exp Immunol. 1996;105(1):84–8.Google Scholar
  28. 28.
    Stein R, Witz IP, Ovadia J, Goldenberg DM, Yron I. CD5+ B cells and naturally occurring autoantibodies in cancer patients. Clin Exp Immunol. 1991;85(3):418–23.Google Scholar
  29. 29.
    Shoenfeld Y, Fishman P. Gamma-globulin inhibits tumor spreaf in mice. Int. Immunol. 1999;11:1247–52.Google Scholar
  30. 30.
    Merimsky O, Meller I, Moshe I, Bar-Yehuda S, Shoenfeld Y, Fishman P. A possible role for IVIg in the treatment of soft tissue sarcoma: a clinical case and an experimental model. Int J Oncol. 2002;20(4):839–43.Google Scholar
  31. 31.
    Fishman P, Shoenfeld Y. Intravenous immunoglobulin (IVIG) as an inhibitor of tumor growth: from autoimmunity to cancer, chap VII. In: Heidt PJ, Rusch VD, van der Waaij D, editors. Old Herborn University seminar monograph. Germany: Herborn Litrature, Herborn Dill; 2000. p. 93–107.Google Scholar
  32. 32.
    Shoenfeld Y, Levy Y, Fishman P. Shrinkage of melanoma metastases following high dose intravenous immunoglobulin treatment. IMAJ. 2001;3:698–9.Google Scholar
  33. 33.
    Shoenfeld Y, Krause I. IVIG for autoimmune, fibrosis and malignant conditions: our experience with 200 patients. J Clin Immunol. 2004;24:107–14.Google Scholar
  34. 34.
    Kotlan B, Glassy MC. Antibody phage display. Overview of a powerful technology that has quickly translated to the clinic. In: Aitken R, editor. Methods in molecular biology, vol. 562. Humana Press Inc.; 2009. p. 1–16.Google Scholar
  35. 35.
    Ladanyi A, Timar J, Bocsi J, Tovari J, Lapis K. Sex-dependent liver metastasis of human melanoma lines in SCID mice. Melanoma Res. 1995;5:83–6.Google Scholar
  36. 36.
    Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9.Google Scholar
  37. 37.
    Shoenfeld Y, Blank M, Branch DR, Vassilev T, Käsermann F, Bayry J, et al. IVIG pluripotency and the concept of Fc-sialylation: challenges to the scientist. Nat Rev Immunol. 2014;14(5):349. doi: 10.1038/nri3401-c1.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Beatrix Kotlan
    • 1
    • 2
    Email author
  • Gabriella Liszkay
    • 3
  • Miri Blank
    • 4
  • Orsolya Csuka
    • 5
    • 9
  • Timea Balatoni
    • 3
  • Laszlo Toth
    • 6
  • Klara Eles
    • 2
  • Szabolcs Horvath
    • 2
  • Gyorgy Naszados
    • 7
  • Judit Olasz
    • 5
  • Balazs Banky
    • 8
  • Jozsef Toth
    • 2
  • Maria Godeny
    • 7
    • 9
  • Francesco M. Marincola
    • 10
  • Miklos Kasler
    • 9
  • Yehuda Shoenfeld
    • 4
  1. 1.Molecular Immunology and ToxicologyNational Institute of OncologyBudapestHungary
  2. 2.Center of Surgical and Molecular TumorpathologyNational Institute of OncologyBudapestHungary
  3. 3.OncodermatologyNational Institute of OncologyBudapestHungary
  4. 4.Zabludowitz Center for Autoimmune Diseases, Sheba Medical Center Affiliated to Sackler Faculty of MedicineTel-Aviv UniversityTel AvivIsrael
  5. 5.PathogeneticsNational Institute of OncologyBudapestHungary
  6. 6.OncosurgeryNational Institute of OncologyBudapestHungary
  7. 7.Department of Radiological DiagnosticsNational Institute of OncologyBudapestHungary
  8. 8.County Hospital TatabanyaTatabanyaHungary
  9. 9.National Institute of OncologyBudapestHungary
  10. 10.Sidra Medical and Research CentreDohaQatar

Personalised recommendations