Skip to main content

Anti-centrosome antibodies in breast cancer are the expression of autoimmunity

Abstract

Centrosome abnormalities have been observed in nearly all human solid tumors, but their role in tumorigenesis is unclear. We have demonstrated that autoantibodies reacting with antigens in centrosomes are frequently found in BC sera. In this work, we attempted to characterize the centrosome antigens associated with BC. We immunoscreened a T7 cDNA library of BC proteins with BC sera, and the autoantigens identified were printed as a microarray and hybridized with BC and control sera. We used immunohistochemistry (IHC) to investigate the expression of the cloned autoantigens in BC tissue. Immunoscreening with BC sera led to the cloning of autoantibodies recognizing epitopes developing in a family of proteins located on centrosomes such as peri-centriolar material-1, isomorph CRA, stathmin1, HS actin gamma1, SUMO/sentrin peptidase 2, and ubiquitin-conjugating enzyme E2 variant 1. Antibody reactivity to these proteins that are associated with centrosome assembly and/or microtubule function was highly associated with the diagnosis of BC. IHC staining of formalin-fixed paraffin-embedded sections with specific antibodies showed that aurora and stathmin are expressed in BC. The discovery of autoantibodies to important centrosome antigens associated with BC suggests that this immune reactivity could be related to autoimmunity developing in BC. Our finding that some of these antibodies are also present in a group of healthy women suggests that breakdown of tolerance to centrosome proteins may occur early in breast carcinogenesis and that autoantibodies to centrosome antigens might be biomarkers of early BC.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Nigg EA, Stearns T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol. 2011;13:1154–60.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  2. 2.

    Luders J, Stearns T. Microtubule-organizing centres: a re-evaluation. Nat Rev Mol Cell Biol. 2007;8:161–7.

    Article  PubMed  Google Scholar 

  3. 3.

    Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13:83–117.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Zyss D, Gergely F. Centrosome function in cancer: guilty or innocent? Trends Cell Biol. 2009;7:334–46.

    Article  Google Scholar 

  5. 5.

    Kramer A, Neben K, Ho AD. Centrosome aberrations in hematological malignancies. Cell Biol Int. 2005;29:375–83.

    Article  PubMed  Google Scholar 

  6. 6.

    Nigg EA. Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer. 2002;2:815–25.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL. Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci USA. 1998;95:2950–5.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  8. 8.

    Giehl M, Fabarius A, Frank O, Hochhaus A, Hafner M, Hehlmann R, et al. Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia. 2005;19:1192–7.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P, et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 1998;58:3974–85.

    CAS  PubMed  Google Scholar 

  10. 10.

    Pihan GA, Wallace J, Zhou Y, Doxsey SJ. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res. 2003;63:1398–404.

    CAS  PubMed  Google Scholar 

  11. 11.

    Hardy PA, Zacharias H. Reappraisal of the Hansemann-Boveri hypothesis on the origin of tumors. Cell Biol Int. 2005;29:983–92.

    Article  PubMed  Google Scholar 

  12. 12.

    Fernández-Madrid F, Tang N, Alansari H, et al. Autoantibodies to annexin XI-A and other autoantigens in the diagnosis of breast cancer. Cancer Res. 2004;64:5089–96.

    Article  PubMed  Google Scholar 

  13. 13.

    Vader G, Lens S. The Aurora kinase family in cell division and cancer. Biochim Biophys Acta. 2008;1786:60–72.

    CAS  PubMed  Google Scholar 

  14. 14.

    Bieche I, Lachkar S, Becette V, et al. Overexpression of the stathmin gene in a subset of human breast cancer. Br J Cancer. 1998;78:701–9.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  15. 15.

    Roos G, Brattsand G, Landberg G, Marklund U, Gullberg M. Expression of oncoprotein 18 in human leukemias and lymphomas. Leukemia. 1993;7:1538–46.

    CAS  PubMed  Google Scholar 

  16. 16.

    Price DK, Ball JR, Bahrani-Mostafavi Z, et al. The phosphoprotein Op18/stathmin is differentially expressed in ovarian cancer. Cancer Invest. 2000;18:722–30.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Miller FR, Santner SJ, Tait L, Dawson PJ. LMCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. J Natl Cancer Inst. 2000;92:1185–6.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Berg WA, Campassi C, Langenberg P, et al. Breast imaging reporting and data system. Inter- and intraobserver variability in feature analysis and final assessment. Am J Radiol. 2000;174:1769–77.

    CAS  Google Scholar 

  19. 19.

    Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res. 1997;25:3389–402.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  20. 20.

    Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12:656–64.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  21. 21.

    Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FL, Gay LJ. Generation and initial analysis of more than 15,000 full length human cDNA sequences. Proc Nat Acad Sci USAS. 2001;99:16899–903.

    Google Scholar 

  22. 22.

    Chang KW, Yang PY, Lai HY, Yeh TS, Chen TC, Yeh CT. Identification of a novel actin isoform in hepatocellular carcinoma. Hepatol Res. 2006;36:33–9.

    Article  PubMed  Google Scholar 

  23. 23.

    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Beasley E. The sequence of the human genome. Science. 2001;29:1304–51.

    Article  Google Scholar 

  24. 24.

    Sancho E, Vila MR, Sanchez-Pulido L, Lozana JJ, Paciucci R, Nadal M, Thomson TM. Role of UEV-1 an inactive variant of the E2 ubiquitin-conjugating enzymes, in differentiation and cell cycle behavior of HT-29-M6 intestinal secretory cells. Mol Cell Biol. 1998;18:576–87.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  25. 25.

    Gavanescu I, Vazquez-Abad D, McCauley J, Senecal JL, Doxsey S. Centrosome proteins: a major class of autoantigens in scleroderma. J Clin Immunol. 1999;19:166–71.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Howng SL, Chou AK, Lin CC, Lin ZA, Wang CJ, Loh JK, Lieu AS, Yen JH, Lee CI, Hong YR. Autoimmunity against hNinein, a human centrosomal protein, in patients with rheumatoid arthritis and systemic lupus erythematosus. Mol Med Rep. 2011;4:825–30.

    CAS  PubMed  Google Scholar 

  27. 27.

    Rattner JB, Fritzler MJ. Centriole and centrosome autoantibodies. In: Peter JB, Shoenfeld Y, editors. Autoantibodies. Amsterdam: Elsevier; 1996. p. 13–160.

    Google Scholar 

  28. 28.

    Holmfeldt P, Stenmark S, Gullberg M. Interphase-specific phosphorylation-mediated regulation of tubulin dimer partitioning in human cells. Mol Biol Cell. 2007;18:1909–17.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  29. 29.

    Ringhoff DN, Cassimeris L. Stathmin regulates centrosomal nucleation of microtubules and tubulin dimer/polymer partitioning. Mol Biol Cell. 2009;20:3451–8.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  30. 30.

    Steinmetz MO. Structure and thermodynamics of the tubulin–stathmin interaction. J Struct Biol. 2007;158:137–47.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Friedrich B, Gronberg H, Landstrom M, Gullberg M, Bergh A. Differentiation-stage specific expression of oncoprotein 18 in human and rat prostatic adenocarcinoma. Prostate. 1995;27:102–9.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Hailat N, Strahler J, Melhem R, et al. N-myc gene amplification in neuroblastoma is associated with altered phosphorylation of a proliferation related polypeptide (Op18). Oncogene. 1990;5:1615–8.

    CAS  PubMed  Google Scholar 

  33. 33.

    Brattsand G. Correlation of oncoprotein 18/stathmin expression in human breast cancer with established prognostic factors. Br J Cancer. 2000;83:311–8.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  34. 34.

    Bieche I, Lachkar S, Becette V, et al. Overexpression of the stathmin gene in a subset of human breast cancer. Br J Cancer. 1998;78:701–9.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  35. 35.

    Hanash SM, Strahler J, Kuick R, Chu EH, Nichols D. Identification of a polypeptide associated with the malignant phenotype in acute leukemia. J Biol Chem. 1988;263:12813–5.

    CAS  PubMed  Google Scholar 

  36. 36.

    Nylander K, Marklund U, Brattsand G, Gullberg M, Roos G. Immunohistochemical detection of oncoprotein 18 (Op18) in malignant lymphomas. Histochem J. 1995;27:155–60.

  37. 37.

    Price DK, Ball JR, Bahrani-Mostafavi Z. The phosphoprotein Op18/stathmin is differentially expressed in ovarian cancer. Cancer Invest. 2000;18:722–30.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Curmi PA, Nogues C, Lachkar S, Carelle N, Gonthier MP, Sobel A, Lidereau R, Bieche I. Overexpression of stathmin in breast carcinomas points out to highly proliferative tumours. Br J Cancer. 2000;82:142–50.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  39. 39.

    Wang F, Xuan XY, Yang X, Cao L, Pang LN, Zhou R, Fan QX, Wang LX. Stathmin is a marker of progression and poor prognosis in esophageal carcinoma. Asian Pac J Cancer Prev. 2014;15:3613–8.

    Article  PubMed  Google Scholar 

  40. 40.

    Belletti B, Nicoloso MS, Schiappacassi M, Berton S, Lovat F, Wolf K, Canzonieri V, D’Andrea S, Zucchetto A, Friedl P, Colombatti A, Baldassarre G. Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Mol Biol Cell. 2008;19:2000–13.

    Article  Google Scholar 

  41. 41.

    Balczon R, Bao L, Zimmer WE. PCM-1, a 228-kD centrosome autoantigen with a distinct cell cycle distribution. J Cell Biol. 1994;124:783–93.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Kubo A, Sasaki H, Yuba-Kubo A, Tsukita S, Shiina N. Centriolar satellites: molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis. J Cell Biol. 1999;147:969–79.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  43. 43.

    Dammermann A, Merdes A. Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol. 2002;159(2):255–66.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  44. 44.

    Bao L, Zimmer WE, Balczon R. Autoepitope mapping of the centrosome autoantigen PCM-1 using scleroderma sera with anticentrosome autoantibodies. Autoimmunity. 1995;22:219–28.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Vaughan Sue, Dawe Helen R. Common themes in centriole and centrosome movements. Trends Cell Biol. 2011;21:57–66.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Euteneuer U, Schliwa M. Evidence for an involvement of actin in the positioning and motility of centrosomes. J Cell Biol. 1985;101:96–103.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Yamazaki D, Kurisu S, Takenawa T. Regulation of cancer cell motility through actin reorganization. Cancer Sci. 2005;96:379–86.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta. 2007;1773:642–52.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  49. 49.

    Habermann K, Lange BM. New insights into subcomplex assembly and modifications of centrosomal proteins. Cell Div. 2012;7:17.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  50. 50.

    Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol. 2005;23:4776–89.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Honda K, Mihara H, Kato Y, et al. Degradation of human Aurora 2 protein kinase by the anaphase-promoting complex–ubiquitin–proteasome pathway. Oncogene. 2000;19:2812–9.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Ban R, Tamotsu N, Takeshi U. Mitotic kinase Aurora-B is regulated by SUMO-2 conjugation deconjugation during mitosis. Genes Cells. 2011;16:652–69.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Katayam H, Brinkley WR, Sen S. The aurora kinases: role in cell transformation and tumorigenesis. Cancer Metastasis Rev. 2003;22:451–64.

    Article  Google Scholar 

  54. 54.

    Tanaka T, Kimura M, Matsunga K, Fukada D, Mori H, Okano Y. Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res. 1999;59:2041–4.

    CAS  PubMed  Google Scholar 

  55. 55.

    Goepfert TM, Adigun YE, Zhong L, Gay J, Medina D, Brinkley WR. Centrosome amplification and overexpression of Aurora A are early events in rat mammary carcinogenesis. Cancer Res. 2012;62:4115–22.

    Google Scholar 

  56. 56.

    Tan EM. Autoantibodies as reporters identifying aberrant cellular mechanisms in tumorigenesis. J Clin Investig. 2001;108:1411–5.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  57. 57.

    Koziol JA, Zhang JY, Casiano CA, Peng XX, Shi FD, Feng AC, Chan EK, Tan EM. Recursive partitioning as an approach to selection of immune markers for tumor diagnosis. Clin Cancer Res. 2003;9:5120–6.

    CAS  PubMed  Google Scholar 

  58. 58.

    Hanash S. Disease proteomics. Nature. 2003;422:226–32.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Chapman C, Murray A, Chakrabarti J, Thorpe A, Woolston C, Sahin U, Barnes A, Robertson J. Autoantibodies in breast cancer: their use as an aid to early diagnosis. Ann Oncol. 2007;18:868–73.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was done with the partial support of NIH NCI R01 122277. We thank the technical work of Naimei Tang and Xinbo Zhang in several aspects of this project.

Conflict of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marie-Claire Maroun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maroun, MC., Olivero, O., Lipovich, L. et al. Anti-centrosome antibodies in breast cancer are the expression of autoimmunity. Immunol Res 60, 339–347 (2014). https://doi.org/10.1007/s12026-014-8582-4

Download citation

Keywords

  • Breast cancer
  • Centrosome proteins
  • Autoimmunity
  • Chromosomal instability