Skip to main content

Advertisement

Log in

The immune system and hypertension

  • IMMUNOLOGY AT THE UNIVERSITY OF IOWA
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

A powerful interaction between the autonomic and the immune systems plays a prominent role in the initiation and maintenance of hypertension and significantly contributes to cardiovascular pathology, end-organ damage and mortality. Studies have shown consistent association between hypertension, proinflammatory cytokines and the cells of the innate and adaptive immune systems. The sympathetic nervous system, a major determinant of hypertension, innervates the bone marrow, spleen and peripheral lymphatic system and is proinflammatory, whereas the parasympathetic nerve activity dampens the inflammatory response through α7-nicotinic acetylcholine receptors. The neuro-immune synapse is bidirectional as cytokines may enhance the sympathetic activity through their central nervous system action that in turn increases the mobilization, migration and infiltration of immune cells in the end organs. Kidneys may be infiltrated by immune cells and mesangial cells that may originate in the bone marrow and release inflammatory cytokines that cause renal damage. Hypertension is also accompanied by infiltration of the adventitia and perivascular adipose tissue by inflammatory immune cells including macrophages. Increased cytokine production induces myogenic and structural changes in the resistance vessels, causing elevated blood pressure. Cardiac hypertrophy in hypertension may result from the mechanical afterload and the inflammatory response to resident or migratory immune cells. Toll-like receptors on innate immune cells function as sterile injury detectors and initiate the inflammatory pathway. Finally, abnormalities of innate immune cells and the molecular determinants of their activation that include toll-like receptor, adrenergic, cholinergic and AT1 receptors can define the severity of inflammation in hypertension. These receptors are putative therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. J Am Med Assoc (JAMA). 2010;303(20):2043–50. doi:10.1001/jama.2010.650.

    Article  CAS  Google Scholar 

  2. Svendsen UG. The role of thymus for the development and prognosis of hypertension and hypertensive vascular disease in mice following renal infarction. Acta Pathol Microbiol Scand Sect A Pathol. 1976;84(3):235–43.

    CAS  Google Scholar 

  3. Svendsen UG. Evidence for an initial, thymus independent and a chronic, thymus dependent phase of DOCA and salt hypertension in mice. Acta Pathol Microbiol Scand Sect A Pathol. 1976;84(6):523–8.

    CAS  Google Scholar 

  4. Ba D, Takeichi N, Kodama T, Kobayashi H. Restoration of T cell depression and suppression of blood pressure in spontaneously hypertensive rats (SHR) by thymus grafts or thymus extracts. J Immunol. 1982;128(3):1211–6.

    CAS  PubMed  Google Scholar 

  5. Ventola DA, Strausser HR. Evaluation of T cell subpopulation and function in thymosin treated spontaneously hypertensive rats. Thymus. 1984;6(3):129–41.

    CAS  PubMed  Google Scholar 

  6. Ebringer A, Doyle AE. Raised serum IgG levels in hypertension. Br Med J. 1970;2(5702):146–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hilme E, Herlitz H, Soderstrom T, Hansson L. Increased secretion of immunoglobulins in malignant hypertension. J Hypertens. 1989;7(2):91–5.

    Article  CAS  PubMed  Google Scholar 

  8. Kristensen BO. Increased serum levels of immunoglobulins in untreated and treated essential hypertension. 1. Relation to blood-pressure. Acta Med Scand. 1978;203(1–2):49–54.

    CAS  PubMed  Google Scholar 

  9. Kristensen BO, Andersen PL. Autoantibodies in untreated and treated essential hypertension. 1. Acta Med Scand. 1978;203(1–2):55–9.

    CAS  PubMed  Google Scholar 

  10. Wilson JD, Bullock JY, Booth RJ. Autoantibodies in hypertension. Lancet. 1978;312(8097):996.

    Article  Google Scholar 

  11. Lozovoy MA, Simao AN, Morimoto HK, Iryioda TM, Panis C, Reiche EM, et al. Hypertension is associated with serologically active disease in patients with systemic lupus erythematosus: role of increased Th1/Th2 ratio and oxidative stress. Scand J Rheumatol. 2014;43(1):59–62. doi:10.3109/03009742.2013.834963.

    Article  CAS  PubMed  Google Scholar 

  12. Ryan MJ. The pathophysiology of hypertension in systemic lupus erythematosus. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R1258–67. doi:10.1152/ajpregu.90864.2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Mathis KW, Venegas-Pont M, Flynn ER, Williams JM, Maric-Bilkan C, Dwyer TM, et al. Hypertension in an experimental model of systemic lupus erythematosus occurs independently of the renal nerves. Am J Physiol Regul Integr Comp Physiol. 2013;305(7):R711–9. doi:10.1152/ajpregu.00602.2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Yap DY, Lai KN. The role of cytokines in the pathogenesis of systemic lupus erythematosus—from bench to bedside. Nephrology. 2013;18(4):243–55. doi:10.1111/nep.12047.

    Article  CAS  PubMed  Google Scholar 

  15. Toussirot E. The IL23/Th17 pathway as a therapeutic target in chronic inflammatory diseases. Inflamm Allergy Drug Targets. 2012;11(2):159–68.

    Article  CAS  PubMed  Google Scholar 

  16. Madhur MS, Funt SA, Li L, Vinh A, Chen W, Lob HE, et al. Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol. 2011;31(7):1565–72. doi:10.1161/ATVBAHA.111.227629.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010;55(2):500–7. doi:10.1161/HYPERTENSIONAHA.109.145094.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. von Vietinghoff S, Ley K. Interleukin 17 in vascular inflammation. Cytokine Growth Factor Rev. 2010;21(6):463–9. doi:10.1016/j.cytogfr.2010.10.003.

    Article  Google Scholar 

  19. Kvakan H, Luft FC, Muller DN. Role of the immune system in hypertensive target organ damage. Trends Cardiovasc Med. 2009;19(7):242–6. doi:10.1016/j.tcm.2010.02.004.

    Article  CAS  PubMed  Google Scholar 

  20. Amador CA, Barrientos V, Pena J, Herrada AA, Gonzalez M, Valdes S, et al. Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension. 2014;. doi:10.1161/HYPERTENSIONAHA.113.02883.

    PubMed  Google Scholar 

  21. Rudemiller N, Lund H, Jacob HJ, Geurts AM, Mattson DL, PhysGen Knockout Program. CD247 modulates blood pressure by altering T-lymphocyte infiltration in the kidney. Hypertension. 2014;63(3):559–64. doi:10.1161/HYPERTENSIONAHA.113.02191.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Luft FC, Dechend R, Muller DN. Immune mechanisms in angiotensin II-induced target-organ damage. Ann Med. 2012;44(Suppl 1):S49–54. doi:10.3109/07853890.2011.653396.

    Article  CAS  PubMed  Google Scholar 

  23. Abboud FM. The Walter B. Cannon Memorial Award Lecture, 2009. Physiology in perspective: The wisdom of the body. In search of autonomic balance: the good, the bad, and the ugly. Am J Physiol Regul Integr Comp Physiol. 2010;298(6):R1449–67. doi:10.1152/ajpregu.00130.2010.

  24. Esler M. The sympathetic nervous system through the ages: from Thomas Willis to resistant hypertension. Exp Physiol. 2011;96(7):611–22. doi:10.1113/expphysiol.2011.052332.

    PubMed  Google Scholar 

  25. Abboud FM, Harwani SC, Chapleau MW. Autonomic neural regulation of the immune system: implications for hypertension and cardiovascular disease. Hypertension. 2012;59(4):755–62. doi:10.1161/HYPERTENSIONAHA.111.186833.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Zucker IH, Hackley JF, Cornish KG, Hiser BA, Anderson NR, Kieval R, et al. Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure. Hypertension. 2007;50(5):904–10. doi:10.1161/HYPERTENSIONAHA.107.095216.

    Article  CAS  PubMed  Google Scholar 

  27. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2004;109(1):120–4. doi:10.1161/01.CIR.0000105721.71640.DA.

    Article  PubMed  Google Scholar 

  28. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311(13):819–23. doi:10.1056/NEJM198409273111303.

    Article  CAS  PubMed  Google Scholar 

  29. Robinson TG, Dawson SL, Eames PJ, Panerai RB, Potter JF. Cardiac baroreceptor sensitivity predicts long-term outcome after acute ischemic stroke. Stroke J Cereb Circul. 2003;34(3):705–12. doi:10.1161/01.STR.0000058493.94875.9F.

    Article  Google Scholar 

  30. Heran BS, Galm BP, Wright JM. Blood pressure lowering efficacy of alpha blockers for primary hypertension. Cochrane Database Syst Rev. 2012;8:CD004643. doi:10.1002/14651858.CD004643.pub3.

  31. Frishman WH, Saunders E. Beta-adrenergic blockers. J Clin Hypertens. 2011;13(9):649–53. doi:10.1111/j.1751-7176.2011.00515.x.

    Article  CAS  Google Scholar 

  32. Raizada MK, Paton JF. Recent advances in the renin-angiotensin system: angiotensin-converting enzyme 2 and (pro)renin receptor. Exp Physiol. 2008;93(5):517–8. doi:10.1113/expphysiol.2008.042861.

    Article  PubMed  Google Scholar 

  33. Zubcevic J, Waki H, Raizada MK, Paton JF. Autonomic-immune-vascular interaction: an emerging concept for neurogenic hypertension. Hypertension. 2011;57(6):1026–33. doi:10.1161/HYPERTENSIONAHA.111.169748.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wyss JM. The role of the sympathetic nervous system in hypertension. Curr Opin Nephrol Hypertens. 1993;2(2):265–73.

    Article  CAS  PubMed  Google Scholar 

  35. Felder RB, Francis J, Zhang ZH, Wei SG, Weiss RM, Johnson AK. Heart failure and the brain: new perspectives. Am J Physiol Regul Integr Comp Physiol. 2003;284(2):R259–76. doi:10.1152/ajpregu.00317.2002.

    Article  CAS  PubMed  Google Scholar 

  36. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124(2):407–21. doi:10.1016/j.cell.2005.10.041.

    Article  CAS  PubMed  Google Scholar 

  37. Ader R, Felten D, Cohen N. Interactions between the brain and the immune system. Annu Rev Pharmacol Toxicol. 1990;30:561–602. doi:10.1146/annurev.pa.30.040190.003021.

    Article  CAS  PubMed  Google Scholar 

  38. Patole PS, Grone HJ, Segerer S, Ciubar R, Belemezova E, Henger A, et al. Viral double-stranded RNA aggravates lupus nephritis through toll-like receptor 3 on glomerular mesangial cells and antigen-presenting cells. J Am Soc Nephrol (JASN). 2005;16(5):1326–38. doi:10.1681/ASN.2004100820.

    Article  CAS  Google Scholar 

  39. Ganta CK, Lu N, Helwig BG, Blecha F, Ganta RR, Zheng L, et al. Central angiotensin II-enhanced splenic cytokine gene expression is mediated by the sympathetic nervous system. Am J Physiol Heart Circ Physiol. 2005;289(4):H1683–91. doi:10.1152/ajpheart.00125.2005.

    Article  CAS  PubMed  Google Scholar 

  40. Nataraj C, Oliverio MI, Mannon RB, Mannon PJ, Audoly LP, Amuchastegui CS, et al. Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway. J Clin Investig. 1999;104(12):1693–701. doi:10.1172/JCI7451.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Bataller R, Gabele E, Schoonhoven R, Morris T, Lehnert M, Yang L, et al. Prolonged infusion of angiotensin II into normal rats induces stellate cell activation and proinflammatory events in liver. Am J Physiol Gastrointest Liver Physiol. 2003;285(3):G642–51. doi:10.1152/ajpgi.00037.2003.

    Article  CAS  PubMed  Google Scholar 

  42. Jurewicz M, McDermott DH, Sechler JM, Tinckam K, Takakura A, Carpenter CB, et al. Human T and natural killer cells possess a functional renin-angiotensin system: further mechanisms of angiotensin II-induced inflammation. J Am Soc Nephrol (JASN). 2007;18(4):1093–102. doi:10.1681/ASN.2006070707.

    Article  CAS  Google Scholar 

  43. Zhang J, Crowley S. The role of type 1 angiotensin receptors on T lymphocytes in cardiovascular and renal diseases. Curr Hypertens Rep. 2013;15(1):39–46. doi:10.1007/s11906-012-0318-z.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies O, et al. Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci USA. 1995;92(8):3521–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Zhang JD, Patel MB, Song YS, Griffiths R, Burchette J, Ruiz P, et al. A novel role for type 1 angiotensin receptors on T lymphocytes to limit target organ damage in hypertension. Circ Res. 2012;110(12):1604–17. doi:10.1161/CIRCRESAHA.111.261768.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Nahmod K, Gentilini C, Vermeulen M, Uharek L, Wang Y, Zhang J, et al. Impaired function of dendritic cells deficient in angiotensin II type 1 receptors. J Pharmacol Exp Ther. 2010;334(3):854–62. doi:10.1124/jpet.109.161760.

    Article  CAS  PubMed  Google Scholar 

  47. Marvar PJ, Thabet SR, Guzik TJ, Lob HE, McCann LA, Weyand C, et al. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res. 2010;107(2):263–70. doi:10.1161/CIRCRESAHA.110.217299.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Crowley SD, Song YS, Lin EE, Griffiths R, Kim HS, Ruiz P. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol. 2010;298(4):R1089–97. doi:10.1152/ajpregu.00373.2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449–60. doi:10.1084/jem.20070657.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Brands MW, Banes-Berceli AK, Inscho EW, Al-Azawi H, Allen AJ, Labazi H. Interleukin 6 knockout prevents angiotensin II hypertension: role of renal vasoconstriction and Janus kinase 2/signal transducer and activator of transcription 3 activation. Hypertension. 2010;56(5):879–84. doi:10.1161/HYPERTENSIONAHA.110.158071.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–62. doi:10.1038/35013070.

    Article  CAS  PubMed  Google Scholar 

  52. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9(5–8):125–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8. doi:10.1038/nature01339.

    Article  CAS  PubMed  Google Scholar 

  54. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–9. doi:10.1038/nature01321.

    Article  CAS  PubMed  Google Scholar 

  55. Vida G, Pena G, Deitch EA, Ulloa L. Alpha7-cholinergic receptor mediates vagal induction of splenic norepinephrine. J Immunol. 2011;186(7):4340–6. doi:10.4049/jimmunol.1003722.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev. 2012;248(1):188–204. doi:10.1111/j.1600-065X.2012.01138.x.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Kawashima K, Fujii T. Extraneuronal cholinergic system in lymphocytes. Pharmacol Ther. 2000;86(1):29–48.

    Article  CAS  PubMed  Google Scholar 

  58. De Rosa MJ, Dionisio L, Agriello E, Bouzat C, Esandi Mdel C. Alpha 7 nicotinic acetylcholine receptor modulates lymphocyte activation. Life Sci. 2009;85(11–12):444–9. doi:10.1016/j.lfs.2009.07.010.

    Article  PubMed  Google Scholar 

  59. Kimura R, Ushiyama N, Fujii T, Kawashima K. Nicotine-induced Ca2 + signaling and down-regulation of nicotinic acetylcholine receptor subunit expression in the CEM human leukemic T-cell line. Life Sci. 2003;72(18–19):2155–8.

    Article  CAS  PubMed  Google Scholar 

  60. Martelli D, McKinley MJ, McAllen RM. The cholinergic anti-inflammatory pathway: a critical review. Auton Neurosci Basic Clin. 2013;. doi:10.1016/j.autneu.2013.12.007.

    Google Scholar 

  61. Skok MV, Grailhe R, Agenes F, Changeux JP. The role of nicotinic receptors in B-lymphocyte development and activation. Life Sci. 2007;80(24–25):2334–6. doi:10.1016/j.lfs.2007.02.005.

    Article  CAS  PubMed  Google Scholar 

  62. Zimring JC, Kapp LM, Yamada M, Wess J, Kapp JA. Regulation of CD8 + cytolytic T lymphocyte differentiation by a cholinergic pathway. J Neuroimmunol. 2005;164(1–2):66–75. doi:10.1016/j.jneuroim.2005.03.018.

    Article  CAS  PubMed  Google Scholar 

  63. Harwani SC, Chapleau MW, Legge KL, Ballas ZK, Abboud FM. Neurohormonal modulation of the innate immune system is proinflammatory in the prehypertensive spontaneously hypertensive rat, a genetic model of essential hypertension. Circ Res. 2012;111(9):1190–7. doi:10.1161/CIRCRESAHA.112.277475.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Li DJ, Evans RG, Yang ZW, Song SW, Wang P, Ma XJ, et al. Dysfunction of the cholinergic anti-inflammatory pathway mediates organ damage in hypertension. Hypertension. 2011;57(2):298–307. doi:10.1161/HYPERTENSIONAHA.110.160077.

    Article  CAS  PubMed  Google Scholar 

  65. Moon JY. Recent update of renin-angiotensin-aldosterone system in the pathogenesis of hypertension. Electrolyte Blood Press (E & BP). 2013;11(2):41–5. doi:10.5049/EBP.2013.11.2.41.

    Article  CAS  Google Scholar 

  66. Rodriguez-Iturbe B, Franco M, Tapia E, Quiroz Y, Johnson RJ. Renal inflammation, autoimmunity and salt-sensitive hypertension. Clin Exp Pharmacol Physiol. 2012;39(1):96–103. doi:10.1111/j.1440-1681.2011.05482.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Shagdarsuren E, Wellner M, Braesen J-H, Park J-K, Fiebeler A, Henke N, et al. Complement activation in angiotensin II-induced organ damage. Circ Res. 2005;97(7):716–24. doi:10.1161/01.res.0000182677.89816.38.

    Article  CAS  PubMed  Google Scholar 

  68. White FN, Grollman A. Autoimmune factors associated with infarction of the kidney. Nephron. 1964;1:93–102.

    Article  CAS  PubMed  Google Scholar 

  69. Rodriguez-Iturbe B, Quiroz Y, Ferrebuz A, Parra G, Vaziri ND. Evolution of renal interstitial inflammation and NF-kappaB activation in spontaneously hypertensive rats. Am J Nephrol. 2004;24(6):587–94. doi:10.1159/000082313.

    Article  CAS  PubMed  Google Scholar 

  70. Rodríguez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Mezzano S, Vaziri ND. Early and sustained inhibition of nuclear factor-κB prevents hypertension in spontaneously hypertensive rats. J Pharmacol Exp Ther. 2005;315(1):51–7. doi:10.1124/jpet.105.088062.

    Article  PubMed  Google Scholar 

  71. Migliorini A, Ebid R, Scherbaum CR, Anders HJ. The danger control concept in kidney disease: mesangial cells. J Nephrol. 2013;26(3):437–49. doi:10.5301/jn.5000247.

    Article  CAS  PubMed  Google Scholar 

  72. Abboud HE. Mesangial cell biology. Exp Cell Res. 2012;318(9):979–85. doi:10.1016/j.yexcr.2012.02.025.

    Article  CAS  PubMed  Google Scholar 

  73. Lopes de Faria JB, Zoukhri D, Lorenzi M. Mesangial cell abnormalities in spontaneously hypertensive rats before the onset of hypertension. Kidney Int. 1997;52(2):387–92.

    Article  CAS  PubMed  Google Scholar 

  74. Ito T, Suzuki A, Imai E, Okabe M, Hori M. Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol (JASN). 2001;12(12):2625–35.

    CAS  Google Scholar 

  75. Mulvany MJ. Small artery remodelling in hypertension. Basic Clin Pharmacol Toxicol. 2012;110(1):49–55. doi:10.1111/j.1742-7843.2011.00758.x.

    Article  CAS  PubMed  Google Scholar 

  76. Savoia C, Schiffrin EL. Inflammation in hypertension. Curr Opin Nephrol Hypertens. 2006;15(2):152–8. doi:10.1097/01.mnh.0000203189.57513.76.

    CAS  PubMed  Google Scholar 

  77. Bakker EN, Matlung HL, Bonta P, de Vries CJ, van Rooijen N, Vanbavel E. Blood flow-dependent arterial remodelling is facilitated by inflammation but directed by vascular tone. Cardiovasc Res. 2008;78(2):341–8. doi:10.1093/cvr/cvn050.

    Article  CAS  PubMed  Google Scholar 

  78. Matlung HL, Bakker EN, VanBavel E. Shear stress, reactive oxygen species, and arterial structure and function. Antioxid Redox Signal. 2009;11(7):1699–709. doi:10.1089/ARS.2008.2408.

    Article  CAS  PubMed  Google Scholar 

  79. Kvakan H, Kleinewietfeld M, Qadri F, Park JK, Fischer R, Schwarz I, et al. Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation. 2009;119(22):2904–12. doi:10.1161/CIRCULATIONAHA.108.832782.

    Article  CAS  PubMed  Google Scholar 

  80. Matrougui K, Abd Elmageed Z, Kassan M, Choi S, Nair D, Gonzalez-Villalobos RA et al. Natural regulatory T cells control coronary arteriolar endothelial dysfunction in hypertensive mice. The Am J Pathol. 2011;178(1):434–41. doi:10.1016/j.ajpath.2010.11.034.

  81. Singh MV, Swaminathan PD, Luczak ED, Kutschke W, Weiss RM, Anderson ME. MyD88 mediated inflammatory signaling leads to CaMKII oxidation, cardiac hypertrophy and death after myocardial infarction. J Mol Cell Cardiol. 2012;52(5):1135–44. doi:10.1016/j.yjmcc.2012.01.021.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM, Schiffrin EL. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol. 2005;25(10):2106–13. doi:10.1161/01.ATV.0000181743.28028.57.

    Article  PubMed  Google Scholar 

  83. Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S, et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 2011;124(12):1370–81. doi:10.1161/CIRCULATIONAHA.111.034470.

    Article  CAS  PubMed  Google Scholar 

  84. Muscari A, Massarelli G, Bastagli L, Poggiopollini G, Tomassetti V, Volta U, et al. Relationship between serum C3 levels and traditional risk factors for myocardial infarction. Acta Cardiol. 1998;53(6):345–54.

    CAS  PubMed  Google Scholar 

  85. Tomaszewski M, Zukowska-Szczechowska E, Grzeszczak W. Evaluation of complement component C4 concentration and immunoglobulins IgA, IgG, and IgM in serum of patients with primary essential hypertension. Pol Arch Med Wewn. 2000;103(5–6):247–51.

    CAS  PubMed  Google Scholar 

  86. Lin ZH, Fukuda N, Jin XQ, Yao EH, Ueno T, Endo M, et al. Complement 3 is involved in the synthetic phenotype and exaggerated growth of vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension. 2004;44(1):42–7. doi:10.1161/01.HYP.0000129540.83284.ca.

    Article  CAS  PubMed  Google Scholar 

  87. Iyer A, Woodruff TM, Wu MC, Stylianou C, Reid RC, Fairlie DP, et al. Inhibition of inflammation and fibrosis by a complement C5a receptor antagonist in DOCA-salt hypertensive rats. J Cardiovasc Pharmacol. 2011;58(5):479–86. doi:10.1097/FJC.0b013e31822a7a09.

    Article  CAS  PubMed  Google Scholar 

  88. Tsan MF, Gao B. Endogenous ligands of Toll-like receptors. J Leukoc Biol. 2004;76(3):514–9. doi:10.1189/jlb.0304127.

    Article  CAS  PubMed  Google Scholar 

  89. Erridge C. Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol. 2010;87(6):989–99. doi:10.1189/jlb.1209775.

    Article  CAS  PubMed  Google Scholar 

  90. Bomfim GF, Dos Santos RA, Oliveira MA, Giachini FR, Akamine EH, Tostes RC, et al. Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin Sci (Lond). 2012;122(11):535–43. doi:10.1042/CS20110523.

    Article  CAS  Google Scholar 

  91. Muller DN, Heissmeyer V, Dechend R, Hampich F, Park JK, Fiebeler A, et al. Aspirin inhibits NF-kappaB and protects from angiotensin II-induced organ damage. FASEB J Off Publ Fed Am Soc Exp Biol. 2001;15(10):1822–4.

    CAS  Google Scholar 

  92. Gratze P, Dechend R, Stocker C, Park JK, Feldt S, Shagdarsuren E, et al. Novel role for inhibitor of differentiation 2 in the genesis of angiotensin II-induced hypertension. Circulation. 2008;117(20):2645–56. doi:10.1161/CIRCULATIONAHA.107.760116.

    Article  CAS  PubMed  Google Scholar 

  93. Tsushima K, Osawa T, Yanai H, Nakajima A, Takaoka A, Manabe I, et al. IRF3 regulates cardiac fibrosis but not hypertrophy in mice during angiotensin II-induced hypertension. FASEB J Off Publ Fed Am Soc Exp Biol. 2011;25(5):1531–43. doi:10.1096/fj.10-174615.

    CAS  Google Scholar 

  94. Jiang DS, Bian ZY, Zhang Y, Zhang SM, Liu Y, Zhang R, et al. Role of interferon regulatory factor 4 in the regulation of pathological cardiac hypertrophy. Hypertension. 2013;61(6):1193–202. doi:10.1161/HYPERTENSIONAHA.111.00614.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, et al. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature. 1995;375(6528):247–50. doi:10.1038/375247a0.

    Article  CAS  PubMed  Google Scholar 

  96. Schieffer B, Luchtefeld M, Braun S, Hilfiker A, Hilfiker-Kleiner D, Drexler H. Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res. 2000;87(12):1195–201.

    Article  CAS  PubMed  Google Scholar 

  97. Sanchez-Lemus E, Benicky J, Pavel J, Larrayoz IM, Zhou J, Baliova M, et al. Angiotensin II AT1 blockade reduces the lipopolysaccharide-induced innate immune response in rat spleen. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):R1376–84. doi:10.1152/ajpregu.90962.2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. McCarthy CG, Goulopoulou S, Wenceslau CF, Spitler K, Matsumoto T, Webb RC. Toll-like receptors and damage-associated molecular patterns: novel links between inflammation and hypertension. Am J Physiol Heart Circ Physiol. 2014;306(2):H184–96. doi:10.1152/ajpheart.00328.2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Ji Y, Liu J, Wang Z, Liu N. Angiotensin II induces inflammatory response partly via toll-like receptor 4-dependent signaling pathway in vascular smooth muscle cells. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2009;23(4–6):265–76. doi:10.1159/000218173.

    Article  CAS  Google Scholar 

  100. Fergusson JR, Fleming VM, Klenerman P. CD161-expressing human T cells. Front Immunol. 2011;2:36. doi:10.3389/fimmu.2011.00036.

    Article  PubMed Central  PubMed  Google Scholar 

  101. Maggi L, Santarlasci V, Capone M, Peired A, Frosali F, Crome SQ, et al. CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur J Immunol. 2010;40(8):2174–81. doi:10.1002/eji.200940257.

    Article  CAS  PubMed  Google Scholar 

  102. Singh MV, Whiteis CA, Cicha MZ, Chapleau MW, Abboud FM. Abnormal immune cell populations in SHR hypertension. Faseb J. 2013;27:1.

    Article  Google Scholar 

  103. Eissler R, Schmaderer C, Rusai K, Kuhne L, Sollinger D, Lahmer T, et al. Hypertension augments cardiac toll-like receptor 4 expression and activity. Hypertens Res Off J Jpn Soc Hypertens. 2011;34(5):551–8. doi:10.1038/hr.2010.270.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Institutes of Health Program Project Grant to FMA (HL14388) and VA Medical Center Grant to MWC (1 I01 BX001414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois M. Abboud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.V., Chapleau, M.W., Harwani, S.C. et al. The immune system and hypertension. Immunol Res 59, 243–253 (2014). https://doi.org/10.1007/s12026-014-8548-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-014-8548-6

Keywords

Navigation