Immunologic Research

, Volume 59, Issue 1–3, pp 279–286 | Cite as

Skin deep: from dermal fibroblasts to pancreatic beta cells

  • Gohar S. Manzar
  • Eun-Mi Kim
  • Pavana Rotti
  • Nicholas Zavazava


Type I diabetes (T1D) is a chronic autoimmune disease caused by pancreatic β-cell destruction induced by autoantibodies and autoreactive T cells. After significant reduction of the β-cell mass, diabetes sets in and can cause significant complications. It is estimated that more than 3 million Americans have T1D, and its prevalence among young individuals is progressively rising; however, the reasons for this increase are not known. Islet transplantation is recognized as the ultimate cure for T1D, but unfortunately, the severe scarcity of available islets makes it necessary to establish alternative sources of β-cells. Our lab seeks to establish human-induced pluripotent stem cells as an unlimited, novel source of insulin-producing cells (IPCs) that are patient-specific, obviating the requirement for immunosuppression. Although several reports have emerged demonstrating successful derivation of IPCs from human pluripotent stem cells, the efficiencies of derivation are inadequate and these IPCs do not respond to glucose stimulation in vitro. We reasoned that the use of a growth factor sequestering bioscaffold and promotion of cell–cell signaling through 3D clustering would enhance the generation of functionally superior IPCs compared to those derived by 2D differentiation. Here, we discuss a novel 3D platform for the generation of highly efficient human IPCs.


Induced pluripotent stem cells Diabetes Insulin-producing cells iPS cells 3D differentiation Pancreatic β-cells 



We would like to thank Sudhanshu Raikwar for his collaboration in the development of the 2D differentiation protocol in our laboratory. This work was made possible by support from a VA Merit Award (1I01BX001125-01A1) and by the NIH/NHLBI grant 5R01HL073015-08. Dr. Kim is supported by an AHA Career Development Award. We also thank the Integrated Islet Distribution Program (IIDP) for providing us with islets used as positive controls for this study. Without the help of the Central Microscopy Core Facility at the University of Iowa, this work would not have been possible.


  1. 1.
    Leroux C, Brazeau AS, Gingras V, Desjardins K, Strychar I, Rabasa-Lhoret R. Lifestyle and cardiometabolic risk in adults with type 1 diabetes: a review. Can J Diabetes. 2014;38(1):62–9. doi: 10.1016/j.jcjd.2013.08.268.CrossRefPubMedGoogle Scholar
  2. 2.
    Vantyghem MC, Defrance F, Quintin D, Leroy C, Raverdi V, Prevost G, et al. Treating diabetes with islet transplantation: lessons from the past decade in Lille. Diabetes Metab. 2014;. doi: 10.1016/j.diabet.2013.10.003.PubMedGoogle Scholar
  3. 3.
    Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem. 2005;53(9):1087–97. doi: 10.1369/jhc.5C6684.2005.CrossRefPubMedGoogle Scholar
  4. 4.
    Chan KM, Raikwar SP, Zavazava N. Strategies for differentiating embryonic stem cells (ESC) into insulin-producing cells and development of non-invasive imaging techniques using bioluminescence. Immunol Res. 2007;39(1–3):261–70.CrossRefPubMedGoogle Scholar
  5. 5.
    Liberatore Rdel R Jr, Damiani D. Insulin pump therapy in type 1 diabetes mellitus. J Pediatr (Rio J). 2006;82(4):249–54. doi: 10.2223/JPED.1507.CrossRefGoogle Scholar
  6. 6.
    Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature. 2012;481(7381):295–305.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401. doi: 10.1038/nbt1259.CrossRefPubMedGoogle Scholar
  8. 8.
    Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. 2012;61(8):2016–29. doi: 10.2337/db11-1711.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Xie R, Everett LJ, Lim HW, Patel NA, Schug J, Kroon E, et al. Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell. 2013;12(2):224–37. doi: 10.1016/j.stem.2012.11.023.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009;19(4):429–38. doi: 10.1038/cr.2009.28.CrossRefPubMedGoogle Scholar
  11. 11.
    Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10(9):1886–90. doi: 10.1002/pmic.200900758.CrossRefPubMedGoogle Scholar
  12. 12.
    Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373–9. doi: 10.1038/nature12517.CrossRefPubMedGoogle Scholar
  13. 13.
    Takebe T, Zhang R–R, Koike H, Kimura M, Yoshizawa E, Enomura M, et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc. 2014;9(2):396–409. doi: 10.1038/nprot.2014.020.CrossRefPubMedGoogle Scholar
  14. 14.
    Christoforou N, Liau B, Chakraborty S, Chellapan M, Bursac N, Leong KW. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues. PLoS ONE. 2013;8(6):e65963. doi: 10.1371/journal.pone.0065963.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 2005;15(5):378–86. doi: 10.1016/j.semcancer.2005.05.004.CrossRefPubMedGoogle Scholar
  16. 16.
    Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007;446(7139):1030–7. doi: 10.1038/nature05817.CrossRefPubMedGoogle Scholar
  17. 17.
    Lin X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development. 2004;131(24):6009–21. doi: 10.1242/dev.01522.CrossRefPubMedGoogle Scholar
  18. 18.
    Hacker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol. 2005;6(7):530–41. doi: 10.1038/nrm1681.CrossRefPubMedGoogle Scholar
  19. 19.
    Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009;17(2):153–62. doi: 10.1111/j.1524-475X.2009.00466.x.CrossRefPubMedGoogle Scholar
  20. 20.
    Parnaud G, Hammar E, Rouiller DG, Armanet M, Halban PA, Bosco D. Blockade of beta1 integrin-laminin-5 interaction affects spreading and insulin secretion of rat beta-cells attached on extracellular matrix. Diabetes. 2006;55(5):1413–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Peiris H, Bonder CS, Coates PT, Keating DJ, Jessup CF. The beta-cell/EC axis: how do islet cells talk to each other? Diabetes. 2014;63(1):3–11. doi: 10.2337/db13-0617.CrossRefPubMedGoogle Scholar
  22. 22.
    Johansson A, Lau J, Sandberg M, Borg LA, Magnusson PU, Carlsson PO. Endothelial cell signalling supports pancreatic beta cell function in the rat. Diabetologia. 2009;52(11):2385–94. doi: 10.1007/s00125-009-1485-6.CrossRefPubMedGoogle Scholar
  23. 23.
    Givant-Horwitz V, Davidson B, Reich R. Laminin-induced signaling in tumor cells. Cancer Lett. 2005;223(1):1–10. doi: 10.1016/j.canlet.2004.08.030.CrossRefPubMedGoogle Scholar
  24. 24.
    Spence JR, Wells JM. Translational embryology: using embryonic principles to generate pancreatic endocrine cells from embryonic stem cells. Dev Dyn. 2007;236(12):3218–27. doi: 10.1002/dvdy.21366.CrossRefPubMedGoogle Scholar
  25. 25.
    Wells JM, Melton DA. Vertebrate endoderm development. Ann Rev Cell Dev Biol. 1999;15:393–410. doi: 10.1146/annurev.cellbio.15.1.393.CrossRefGoogle Scholar
  26. 26.
    Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 1997;15(1):106–10. doi: 10.1038/ng0197-106.CrossRefPubMedGoogle Scholar
  27. 27.
    Burlison JS, Long Q, Fujitani Y, Wright CV, Magnuson MA. Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Dev Biol. 2008;316(1):74–86. doi: 10.1016/j.ydbio.2008.01.011.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Hart A, Papadopoulou S, Edlund H. Fgf10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Dev Dyn. 2003;228(2):185–93. doi: 10.1002/dvdy.10368.CrossRefPubMedGoogle Scholar
  29. 29.
    Raikwar SP, Zavazava N. Insulin producing cells derived from embryonic stem cells: are we there yet? J Cell Physiol. 2009;218(2):256–63. doi: 10.1002/jcp.21615.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Dixit D, Ghildiyal R, Anto NP, Ghosh S, Sharma V, Sen E. Guggulsterone sensitizes glioblastoma cells to Sonic hedgehog inhibitor SANT-1 induced apoptosis in a Ras/NFkappaB dependent manner. Cancer Lett. 2013;336(2):347–58. doi: 10.1016/j.canlet.2013.03.025.CrossRefPubMedGoogle Scholar
  31. 31.
    Massagué J, Chen Y-G. Controlling TGF-β signaling. Genes Dev. 2000;14(6):627–44. doi: 10.1101/gad.14.6.627.PubMedGoogle Scholar
  32. 32.
    Gellibert F, Woolven J, Fouchet MH, Mathews N, Goodland H, Lovegrove V, et al. Identification of 1,5-naphthyridine derivatives as a novel series of potent and selective TGF-beta type I receptor inhibitors. J Med Chem. 2004;47(18):4494–506. doi: 10.1021/jm0400247.CrossRefPubMedGoogle Scholar
  33. 33.
    Suzuki T, Dai P, Hatakeyama T, Harada Y, Tanaka H, Yoshimura N, et al. TGF-beta signaling regulates pancreatic beta-cell proliferation through control of cell cycle regulator p27 expression. Acta histochemica et cytochemica. 2013;46(2):51–8. doi: 10.1267/ahc.12035.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Biden TJ, Schmitz-Peiffer C, Burchfield JG, Gurisik E, Cantley J, Mitchell CJ, et al. The diverse roles of protein kinase C in pancreatic beta-cell function. Biochem Soc Trans. 2008;36(Pt 5):916–9. doi: 10.1042/BST0360916.CrossRefPubMedGoogle Scholar
  35. 35.
    Pugliese A, Reijonen HK, Nepom J, Burke GW 3rd. Recurrence of autoimmunity in pancreas transplant patients: research update. Diabetes Manag. 2011;1(2):229–38. doi: 10.2217/dmt.10.21.CrossRefGoogle Scholar
  36. 36.
    Dolgin E. Encapsulate this. Nat Med. 2014;20(1):9–11. doi: 10.1038/nm0114-9.CrossRefPubMedGoogle Scholar
  37. 37.
    Krishnamurthy B, Dudek NL, McKenzie MD, Purcell AW, Brooks AG, Gellert S, et al. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J Clin Investig. 2006;116(12):3258–65. doi: 10.1172/JCI29602.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Ergun-Longmire B, Marker J, Zeidler A, Rapaport R, Raskin P, Bode B, et al. Oral insulin therapy to prevent progression of immune-mediated (type 1) diabetes. Ann N Y Acad Sci. 2004;1029:260–77. doi: 10.1196/annals.1309.057.CrossRefPubMedGoogle Scholar
  39. 39.
    Xu D, Prasad S, Miller SD. Inducing immune tolerance: a focus on Type 1 diabetes mellitus. Diabetes Manag. 2013;3(5):415–26. doi: 10.2217/dmt.13.36.CrossRefGoogle Scholar
  40. 40.
    Nakayama M, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature. 2005;435(7039):220–3. doi: 10.1038/nature03523.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    von Herrath M, Sanda S, Herold K. Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol. 2007;7(12):988–94. doi: 10.1038/nri2192.CrossRefGoogle Scholar
  42. 42.
    Durinovic-Bello I. Autoimmune diabetes: the role of T cells, MHC molecules and autoantigens. Autoimmunity. 1998;27(3):159–77.CrossRefPubMedGoogle Scholar
  43. 43.
    Yu L, Rewers M, Gianani R, Kawasaki E, Zhang Y, Verge C, et al. Antiislet autoantibodies usually develop sequentially rather than simultaneously. J Clin Endocrinol Metab. 1996;81(12):4264–7. doi: 10.1210/jcem.81.12.8954025.PubMedGoogle Scholar
  44. 44.
    Li L, Baroja ML, Majumdar A, Chadwick K, Rouleau A, Gallacher L, et al. Human embryonic stem cells possess immune-privileged properties. Stem Cells. 2004;22(4):448–56. doi: 10.1634/stemcells.22-4-448.CrossRefPubMedGoogle Scholar
  45. 45.
    Kim EM, Manzar G, Zavazava N. Human iPS cell-derived hematopoietic progenitor cells induce T-cell anergy in in vitro-generated alloreactive CD8(+) T cells. Blood. 2013;121(26):5167–75. doi: 10.1182/blood-2012-11-467753.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Chan KM, Bonde S, Klump H, Zavazava N. Hematopoiesis and immunity of HOXB4-transduced embryonic stem cell-derived hematopoietic progenitor cells. Blood. 2008;111(6):2953–61. doi: 10.1182/blood-2007-10-117366.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Kim EM, Miyake B, Aggarwal M, Voetlause R, Griffith M, Zavazava N. ES cell-derived hematopoietic progenitor cells (HPCs) downregulate the CD3 xi chain on T cells, abrogating alloreactive T cells. Immunology. 2014;. doi: 10.1111/imm.12268.Google Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2014

Authors and Affiliations

  • Gohar S. Manzar
    • 1
    • 2
    • 3
  • Eun-Mi Kim
    • 1
    • 3
  • Pavana Rotti
    • 1
    • 2
  • Nicholas Zavazava
    • 1
    • 2
    • 3
  1. 1.Division of Immunology, Department of Internal MedicineUniversity of Iowa Hospitals and ClinicsIowa CityUSA
  2. 2.Department of Biomedical EngineeringThe University of IowaIowa CityUSA
  3. 3.Veteran Affairs Medical CenterIowa CityUSA

Personalised recommendations