Immunologic Research

, Volume 59, Issue 1–3, pp 211–219 | Cite as

Effects of obesity on immune responses to renal tumors

  • Vincent Chehval
  • Lyse A. NorianEmail author


Kidney cancer incidence in the USA has been steadily increasing over the past several decades. The reasons for this are not completely clear, but an increased prevalence of known predisposing factors may be promoting this trend. Several major risk factors for kidney cancer have been identified. Among these, obesity is notable because its incidence has risen dramatically during this same period of time. Here, we will review the relationship between obesity and kidney cancer, and will explore the idea that obesity-mediated alterations in immune function may render immunotherapies for renal tumors ineffective. To support this idea, we will summarize characteristics of endogenous immune responses to renal tumors, as well as existing and developing immune-based therapies for kidney cancer patients. In doing so, we will highlight the ways in which altered immune function in obese individuals may render these therapies ineffective.


Obesity Kidney cancer Tumor immunity Immunotherapy 



This work was supported by a National Cancer Institute Grant (# 1 R01 CA181088-01) to LAN.


  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. Nat Rev Urol. 2010;7:245–57.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Escudier B, Eisen T, Porta C, Patard JJ, Khoo V, Algaba F, Mulders P, Kataja V. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii65–71.CrossRefPubMedGoogle Scholar
  4. 4.
    Motzer RJ, Bander NH, Nanus DM. Renal-cell carcinoma. N Engl J Med. 1996;335:865–75.CrossRefPubMedGoogle Scholar
  5. 5.
    Janowitz T, Welsh SJ, Zaki K, Mulders P, Eisen T. Adjuvant therapy in renal cell carcinoma-past, present, and future. Semin Oncol. 2013;40:482–91.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Weikert S, Ljungberg B. Contemporary epidemiology of renal cell carcinoma: perspectives of primary prevention. World J Urol. 2010;28:247–52.CrossRefPubMedGoogle Scholar
  7. 7.
    Decastro GJ, McKiernan JM. Epidemiology, clinical staging, and presentation of renal cell carcinoma. Urol Clin North Am. 2008;35:581–92 vi.CrossRefPubMedGoogle Scholar
  8. 8.
    McGuire BB, Fitzpatrick JM. BMI and the risk of renal cell carcinoma. Curr Opin Urol. 2011;21:356–61.CrossRefPubMedGoogle Scholar
  9. 9.
    Sanfilippo KM, McTigue KM, Fidler CJ, Neaton JD, Chang Y, Fried LF, Liu S, Kuller LH. Hypertension and obesity and the risk of kidney cancer in 2 large cohorts of US men and women. Hypertension. 2014;63:934–41.Google Scholar
  10. 10.
    Yoon SS, Ostchega Y, Louis T. Recent trends in the prevalence of high blood pressure and its treatment and control, 1999–2008. NCHS Data Brief. 2010;48:1–8.Google Scholar
  11. 11.
    Gilbert CA, Slingerland JM. Cytokines, obesity, and cancer: new insights on mechanisms linking obesity to cancer risk and progression. Annu Rev Med. 2012;64:45–57.Google Scholar
  12. 12.
    Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303:235–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA. 2010;303:242–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, Dietz W. Obesity and severe obesity forecasts through 2030. Am J Prev Med. 2012;42:563–70.CrossRefPubMedGoogle Scholar
  15. 15.
    Naya Y, Zenbutsu S, Araki K, Nakamura K, Kobayashi M, Kamijima S, Imamoto T, Nihei N, Suzuki H, Ichikawa T, et al. Influence of visceral obesity on oncologic outcome in patients with renal cell carcinoma. Urol Int. 2010;85:30–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Clark W, Siegel EM, Chen YA, Zhao X, Parsons CM, Hernandez JM, Weber J, Thareja S, Choi J, Shibata D. Quantitative measures of visceral adiposity and body mass index in predicting rectal cancer outcomes after neoadjuvant chemoradiation. J Am Coll Surg. 2013;216:1070–81.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Ahima RS, Lazar MA. Physiology: the health risk of obesity–better metrics imperative. Science. 2013;341:856–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang F, Xu Y. Body mass index and risk of renal cell cancer: a dose–response meta-analysis of published cohort studies. Int J Cancer. 2014. doi: 10.1002/ijc.28813.
  19. 19.
    Beebe-Dimmer JL, Colt JS, Ruterbusch JJ, Keele GR, Purdue MP, Wacholder S, Graubard BI, Davis F, Chow WH, Schwartz KL. Body mass index and renal cell cancer: the influence of race and sex. Epidemiology. 2012;23:821–8.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Ostchega Y, Hughes JP, Terry A, Fakhouri TH, Miller I. Abdominal obesity, body mass index, and hypertension in US adults: NHANES 2007–2010. Am J Hypertens. 2012;25:1271–8.PubMedGoogle Scholar
  21. 21.
    Bergstrom A, Hsieh CC, Lindblad P, Lu CM, Cook NR, Wolk A. Obesity and renal cell cancer: a quantitative review. Br J Cancer. 2001;85:984–90.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Samanic C, Chow WH, Gridley G, Jarvholm B, Fraumeni JF Jr. Relation of body mass index to cancer risk in 362,552 Swedish men. Cancer Causes Control. 2006;17:901–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D. Cancer incidence and mortality in relation to body mass index in the million women study: cohort study. BMJ. 2007;335:1134.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Zhu Y, Wang HK, Zhang HL, Yao XD, Zhang SL, Dai B, Shen YJ, Liu XH, Zhou LP, Ye DW. Visceral obesity and risk of high grade disease in clinical t1a renal cell carcinoma. J Urol. 2013;189:447–53.CrossRefPubMedGoogle Scholar
  25. 25.
    Waalkes S, Merseburger AS, Kramer MW, Herrmann TR, Wegener G, Rustemeier J, Hofmann R, Schrader M, Kuczyk MA, Schrader AJ. Obesity is associated with improved survival in patients with organ-confined clear-cell kidney cancer. Cancer Causes Control. 2010;21:1905–10.CrossRefPubMedGoogle Scholar
  26. 26.
    Parker AS, Lohse CM, Cheville JC, Thiel DD, Leibovich BC, Blute ML. Greater body mass index is associated with better pathologic features and improved outcome among patients treated surgically for clear cell renal cell carcinoma. Urology. 2006;68:741–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Pfitzenmaier J, Pritsch M, Haferkamp A, Jakobi H, Fritsch F, Gilfrich C, Djakovic N, Buse S, Pahernik S, Hohenfellner M. Is the body mass index a predictor of adverse outcome in prostate cancer after radical prostatectomy in a mid-European study population? BJU Int. 2009;103:877–82.CrossRefPubMedGoogle Scholar
  28. 28.
    Kopecky O, Lukesova S, Vroblova V, Vokurkova D, Moravek P, Safranek H, Hlavkova D, Soucek P. Phenotype analysis of tumour-infiltrating lymphocytes and lymphocytes in peripheral blood in patients with renal carcinoma. Acta Medica (Hradec Kralove). 2007;50:207–12.Google Scholar
  29. 29.
    Minarik I, Lastovicka J, Budinsky V, Kayserova J, Spisek R, Jarolim L, Fialova A, Babjuk M, Bartunkova J. Regulatory T cells, dendritic cells and neutrophils in patients with renal cell carcinoma. Immunol Lett. 2013;152:144–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Wang QJ, Hanada K, Robbins PF, Li YF, Yang JC. Distinctive features of the differentiated phenotype and infiltration of tumor-reactive lymphocytes in clear cell renal cell carcinoma. Cancer Res. 2012;72:6119–29.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Hendriks J, Gravestein LA, Tesselaar K, van Lier RA, Schumacher TN, Borst J. CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol. 2000;1:433–40.CrossRefPubMedGoogle Scholar
  32. 32.
    Xiao Y, Hendriks J, Langerak P, Jacobs H, Borst J. CD27 is acquired by primed B cells at the centroblast stage and promotes germinal center formation. J Immunol. 2004;172:7432–41.CrossRefPubMedGoogle Scholar
  33. 33.
    Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005;65:3044–8.PubMedGoogle Scholar
  34. 34.
    Sejima T, Iwamoto H, Morizane S, Hinata N, Yao A, Isoyama T, Saito M, Takenaka A. The significant immunological characteristics of peripheral blood neutrophil-to-lymphocyte ratio and Fas ligand expression incidence in nephrectomized tumor in late recurrence from renal cell carcinoma. Urol Oncol. 2013;31:1343–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Jensen HK, Donskov F, Marcussen N, Nordsmark M, Lundbeck F, von der Maase H. Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J Clin Oncol. 2009;27:4709–17.CrossRefPubMedGoogle Scholar
  36. 36.
    Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007;13:721s–6s.CrossRefPubMedGoogle Scholar
  37. 37.
    Finke JH, Rayman PA, Ko JS, Bradley JM, Gendler SJ, Cohen PA. Modification of the tumor microenvironment as a novel target of renal cell carcinoma therapeutics. Cancer J. 2013;19:353–64.CrossRefPubMedGoogle Scholar
  38. 38.
    Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol. 2006;176:284–90.CrossRefPubMedGoogle Scholar
  40. 40.
    Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182:4499–506.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol. 2006;16:53–65.CrossRefPubMedGoogle Scholar
  42. 42.
    Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 2004;64:5839–49.CrossRefPubMedGoogle Scholar
  43. 43.
    Webster WS, Lohse CM, Thompson RH, Dong H, Frigola X, Dicks DL, Sengupta S, Frank I, Leibovich BC, Blute ML, et al. Mononuclear cell infiltration in clear-cell renal cell carcinoma independently predicts patient survival. Cancer. 2006;107:46–53.CrossRefPubMedGoogle Scholar
  44. 44.
    Thyavihally YB, Mahantshetty U, Chamarajanagar RS, Raibhattanavar SG, Tongaonkar HB. Management of renal cell carcinoma with solitary metastasis. World J Surg Oncol. 2005;3:48.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Fottner A, Szalantzy M, Wirthmann L, Stahler M, Baur-Melnyk A, Jansson V, Durr HR. Bone metastases from renal cell carcinoma: patient survival after surgical treatment. BMC Musculoskelet Disord. 2010;11:145.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Ather MH, Masood N, Siddiqui T. Current management of advanced and metastatic renal cell carcinoma. Urol J. 2010;7:1–9.PubMedGoogle Scholar
  47. 47.
    Pantuck AJ, Belldegrun AS, Figlin RA. Cytoreductive nephrectomy for metastatic renal cell carcinoma: is it still imperative in the era of targeted therapy? Clin Cancer Res. 2007;13:693s–6s.CrossRefPubMedGoogle Scholar
  48. 48.
    Hotte S, Waldron T, Canil C, Winquist E. Interleukin-2 in the treatment of unrespectable or metastatic renal cell cancer: a systematic review and practice guideline. Can Urol Assoc J. 2007;1:27–38.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Rosenberg SA. Interleukin 2 for patients with renal cancer. Nat Clin Pract Oncol. 2007;4:497.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    McDermott DF, Regan MM, Clark JI, Flaherty LE, Weiss GR, Logan TF, Kirkwood JM, Gordon MS, Sosman JA, Ernstoff MS, et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol. 2005;23:133–41.CrossRefPubMedGoogle Scholar
  51. 51.
    Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, et al. Multipeptide immune response to cancer vaccine IMA901 after single–dose cyclophosphamide associates with longer patient survival. Nat Med. 2012;18:1254–61.CrossRefPubMedGoogle Scholar
  52. 52.
    Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res. 2009;15:2148–57.CrossRefPubMedGoogle Scholar
  53. 53.
    Escudier B. Emerging immunotherapies for renal cell carcinoma. Ann Oncol. 2012;23(Suppl 8):35–40.CrossRefGoogle Scholar
  54. 54.
    Inman BA, Harrison MR, George DJ. Novel immunotherapeutic strategies in development for renal cell carcinoma. Eur Urol. 2013;63:881–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Thompson RH, Dong H, Lohse CM, Leibovich BC, Blute ML, Cheville JC, Kwon ED. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res. 2007;13:1757–61.CrossRefPubMedGoogle Scholar
  56. 56.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller TL, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.CrossRefPubMedGoogle Scholar
  58. 58.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 2001;19:565–94.CrossRefPubMedGoogle Scholar
  60. 60.
    Yang JC, Hughes M, Kammula U, Royal R, Sherry RM, Topalian SL, Suri KB, Levy C, Allen T, Mavroukakis S, et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother. 2007;30:825–30.PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Pract. 2005;69:29–35.CrossRefPubMedGoogle Scholar
  62. 62.
    Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4:579–91.CrossRefPubMedGoogle Scholar
  63. 63.
    Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56:1010–3.CrossRefPubMedGoogle Scholar
  64. 64.
    Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science. 2013;339:286–91.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Karlsson EA, Beck MA. The burden of obesity on infectious disease. Exp Biol Med (Maywood). 2010;235:1412–24.CrossRefGoogle Scholar
  67. 67.
    Hance KW, Rogers CJ, Hursting SD, Greiner JW. Combination of physical activity, nutrition, or other metabolic factors and vaccine response. Front Biosci. 2007;12:4997–5029.PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    O’Rourke RW, Kay T, Scholz MH, Diggs B, Jobe BA, Lewinsohn DM, Bakke AC. Alterations in T-cell subset frequency in peripheral blood in obesity. Obes Surg. 2005;15:1463–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Tanaka S, Inoue S, Isoda F, Waseda M, Ishihara M, Yamakawa T, Sugiyama A, Takamura Y, Okuda K. Impaired immunity in obesity: suppressed but reversible lymphocyte responsiveness. Int J Obes Relat Metab Disord. 1993;17:631–6.PubMedGoogle Scholar
  70. 70.
    Nieman DC, Henson DA, Nehlsen-Cannarella SL, Ekkens M, Utter AC, Butterworth DE, Fagoaga OR. Influence of obesity on immune function. J Am Diet Assoc. 1999;99:294–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Smith AG, Sheridan PA, Harp JB, Beck MA. Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J Nutr. 2007;137:1236–43.PubMedGoogle Scholar
  72. 72.
    Lautenbach A, Wrann CD, Jacobs R, Muller G, Brabant G, Nave H. Altered phenotype of NK cells from obese rats can be normalized by transfer into lean animals. Obesity (Silver Spring). 2009;17:1848–55.CrossRefGoogle Scholar
  73. 73.
    James BR, Tomanek-Chalkley A, Askeland EJ, Kucaba T, Griffith TS, Norian LA. Diet-induced obesity alters dendritic cell function in the presence and absence of tumor growth. J Immunol. 2012;189:1311–21.Google Scholar
  74. 74.
    Smith AG, Sheridan PA, Tseng RJ, Sheridan JF, Beck MA. Selective impairment in dendritic cell function and altered antigen-specific CD8+ T-cell responses in diet-induced obese mice infected with influenza virus. Immunology. 2009;126:268–79.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Macia L, Delacre M, Abboud G, Ouk TS, Delanoye A, Verwaerde C, Saule P, Wolowczuk I. Impairment of dendritic cell functionality and steady-state number in obese mice. J Immunol. 2006;177:5997–6006.CrossRefPubMedGoogle Scholar
  76. 76.
    Weitman ES, Aschen SZ, Farias-Eisner G, Albano N, Cuzzone DA, Ghanta S, Zampell JC, Thorek D, Mehrara BJ. Obesity impairs lymphatic fluid transport and dendritic cell migration to lymph nodes. PLoS One. 2013;8:e70703.PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Karlsson EA, Sheridan PA, Beck MA. Diet-induced obesity impairs the T cell memory response to influenza virus infection. J Immunol. 2010;184:3127–33.CrossRefPubMedGoogle Scholar
  78. 78.
    Lamas O, Marti A, Martinez JA. Obesity and immunocompetence. Eur J Clin Nutr. 2002;56(Suppl 3):S42–5.CrossRefPubMedGoogle Scholar
  79. 79.
    Sato Mito N, Suzui M, Yoshino H, Kaburagi T, Sato K. Long term effects of high fat and sucrose diets on obesity and lymphocyte proliferation in mice. J Nutr Health Aging. 2009;13:602–6.CrossRefPubMedGoogle Scholar
  80. 80.
    Fernandez-Riejos P, Najib S, Santos-Alvarez J, Martin-Romero C, Perez-Perez A, Gonzalez-Yanes C, Sanchez-Margalet V. Role of leptin in the activation of immune cells. Mediators Inflamm. 2010;2010:568343.PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    de Heredia FP, Gomez-Martinez S, Marcos A. Obesity, inflammation and the immune system. Proc Nutr Soc. 2012;71:332–8.CrossRefPubMedGoogle Scholar
  82. 82.
    Horiguchi A, Ito K, Sumitomo M, Kimura F, Asano T, Hayakawa M. Decreased serum adiponectin levels in patients with metastatic renal cell carcinoma. Jpn J Clin Oncol. 2008;38:106–11.CrossRefPubMedGoogle Scholar
  83. 83.
    Stryjecki C, Mutch DM. Fatty acid-gene interactions, adipokines and obesity. Eur J Clin Nutr. 2011;65:285–97.CrossRefPubMedGoogle Scholar
  84. 84.
    Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev. 2013;93:1–21.CrossRefPubMedGoogle Scholar
  85. 85.
    Norian LA, Rodriguez PC, O’Mara LA, Zabaleta J, Ochoa AC, Cella M, Allen PM. Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via l-arginine metabolism. Cancer Res. 2009;69:3086–94.PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Norian LA, Kresowik TP, Rosevear HM, James BR, Rosean TR, Lightfoot AJ, Kucaba TA, Schwarz C, Weydert CJ, Henry MD, et al. Eradication of metastatic renal cell carcinoma after adenovirus-encoded TNF-related apoptosis-inducing ligand (TRAIL)/CpG immunotherapy. PLoS One. 2012;7:e31085.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of UrologyThe University of Iowa Carver College of MedicineIowa CityUSA
  2. 2.Interdisciplinary Graduate Program in ImmunologyThe University of Iowa Carver College of MedicineIowa CityUSA
  3. 3.Holden Comprehensive Cancer CenterThe University of Iowa Carver College of MedicineIowa CityUSA
  4. 4.Fraternal Order of Eagles Diabetes Research CenterThe University of Iowa Carver College of MedicineIowa CityUSA

Personalised recommendations