Immunologic Research

, Volume 58, Issue 1, pp 51–60 | Cite as

Induction of bone loss in DBA/1J mice immunized with citrullinated autologous mouse type II collagen in the absence of adjuvant

  • Anand Dusad
  • Michael J. Duryee
  • Anita T. Shaw
  • Lynell W. Klassen
  • Daniel R. Anderson
  • Dong Wang
  • Ke Ren
  • Ellen M. Gravallese
  • James R. O’Dell
  • Ted R. Mikuls
  • Geoffrey M. Thiele


Joint damage in rheumatoid arthritis (RA) is characterized by cartilage and bone loss resulting in pain, deformity, and loss of joint function. Anti-citrullinated protein antibody (ACPA) has been implicated in RA pathogenesis and predicts radiographical joint damage and clinical severity. Therefore, the purpose of this study was to assess bone loss by micro-CT, histological joint damage, and ACPA levels using a mouse model of RA. Arthritis was induced by immunizing DBA/1 mice with autologous citrullinated type II mouse collagen (CIT-CII) weekly for 4 weeks. Mice immunized with autologous CII served as controls. At week 5, mice were killed, ACPA levels determined, and micro-CT performed to quantitatively analyze bone damage. Micro-CT analysis revealed significant loss of bone density, volume, and surface (p < 0.05) in bone peripheral to the inflamed joints of CIT-CII animals compared to CII controls. Histological staining demonstrated cartilage, proteoglycan, joint collagen, and bone collagen loss in the CIT-CII group compared to CII. Serum ACPA levels were increased (p = 0.03) in the CIT-CII group compared to CII, and these levels were inversely correlated with bone quantity and quality. In this study, we demonstrate that immunization with autologous CIT-CII initiates significant systemic bone and articular cartilage loss in the absence of adjuvant. Significant inverse correlations of circulating ACPA and bone quality/quantity were present. ACPA levels predict the adverse bone morphological changes in this model of early RA.


Collagen-induced arthritis Citrullination of proteins Animal model Bone loss Cartilage loss 



We thank the members of the Experimental Immunology Group including: Bartlett C. Hamilton, III, Carlos D. Hunter, and Karen C. Easterling. We also thank the University of Nebraska Medical Center tissue science facility for histological processing of samples. This work was funded by the University of Nebraska Medical Center, Internal Medicine, and Division of Rheumatology.


  1. 1.
    Han JY, Reynolds MA. Effect of anti-rheumatic agents on periodontal parameters and biomarkers of inflammation: a systematic review and meta-analysis. J Periodontal Implant Sci. 2012;42(1):3–12. doi: 10.5051/jpis.2012.42.1.3.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Silva MD, Ruan J, Siebert E, Savinainen A, Jaffee B, Schopf L, et al. Application of surface roughness analysis on micro-computed tomographic images of bone erosion: examples using a rodent model of rheumatoid arthritis. Mol Imaging. 2006;5(4):475–84.PubMedGoogle Scholar
  3. 3.
    Uysal H, Nandakumar KS, Kessel C, Haag S, Carlsen S, Burkhardt H, et al. Antibodies to citrullinated proteins: molecular interactions and arthritogenicity. Immunol Rev. 2010;233(1):9–33. doi: 10.1111/j.0105-2896.2009.00853.x.CrossRefPubMedGoogle Scholar
  4. 4.
    Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E, et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest. 2012;122(5):1791–802. doi: 10.1172/JCI60975.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Foulquier C, Sebbag M, Clavel C, Chapuy-Regaud S, Al Badine R, Mechin MC, et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum. 2007;56(11):3541–53. doi: 10.1002/art.22983.CrossRefPubMedGoogle Scholar
  6. 6.
    McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–42. doi: 10.1038/nri2094.CrossRefPubMedGoogle Scholar
  7. 7.
    Ioan-Facsinay A, Willemze A, Robinson DB, Peschken CA, Markland J, van der Woude D, et al. Marked differences in fine specificity and isotype usage of the anti-citrullinated protein antibody in health and disease. Arthritis Rheum. 2008;58(10):3000–8. doi: 10.1002/art.23763.CrossRefPubMedGoogle Scholar
  8. 8.
    Syversen SW, Goll GL, van der Heijde D, Landewe R, Lie BA, Odegard S, et al. Prediction of radiographic progression in rheumatoid arthritis and the role of antibodies against mutated citrullinated vimentin: results from a 10-year prospective study. Ann Rheum Dis. 2010;69(2):345–51. doi: 10.1136/ard.2009.113092.CrossRefPubMedGoogle Scholar
  9. 9.
    van der Woude D, Syversen SW, van der Voort EI, Verpoort KN, Goll GL, van der Linden MP, et al. The ACPA isotype profile reflects long-term radiographic progression in rheumatoid arthritis. Ann Rheum Dis. 2010;69(6):1110–6. doi: 10.1136/ard.2009.116384.CrossRefPubMedGoogle Scholar
  10. 10.
    Koivula MK, Aman S, Karjalainen A, Hakala M, Risteli J. Are there autoantibodies reacting against citrullinated peptides derived from type I and type II collagens in patients with rheumatoid arthritis? Ann Rheum Dis. 2005;64(10):1443–50. doi: 10.1136/ard.2004.031211.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Suzuki A, Yamada R, Ohtake-Yamanaka M, Okazaki Y, Sawada T, Yamamoto K. Anti-citrullinated collagen type I antibody is a target of autoimmunity in rheumatoid arthritis. Biochem Biophys Res Commun. 2005;333(2):418–26. doi: 10.1016/j.bbrc.2005.05.137.CrossRefPubMedGoogle Scholar
  12. 12.
    Snir O, Backlund J, Bostrom J, Andersson I, Kihlberg J, Buckner JH, et al. Multifunctional T cell reactivity with native and glycosylated type II collagen in rheumatoid arthritis. Arthritis Rheum. 2012;64(8):2482–8. doi: 10.1002/art.34459.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Thiele GM, Duryee MJ, Dusad A, Hunter CD, Lacy JP, Anderson DR, et al. Citrullinated mouse collagen administered to DBA/1J mice in the absence of adjuvant initiates arthritis. Int Immunopharmacol. 2012;13(4):424–31. doi: 10.1016/j.intimp.2012.05.007.CrossRefPubMedGoogle Scholar
  14. 14.
    Wooley PH. Collagen-induced arthritis in the mouse. Methods Enzymol. 1988;162:361–73.CrossRefPubMedGoogle Scholar
  15. 15.
    Esser RE, Hildebrand AR, Angelo RA, Watts LM, Murphey MD, Baugh LE. Measurement of radiographic changes in adjuvant-induced arthritis in rats by quantitative image analysis. Arthritis Rheum. 1995;38(1):129–38.CrossRefPubMedGoogle Scholar
  16. 16.
    Hildebrand T, Ruegsegger P. Quantification of bone micro architecture with the structure model index. Comput Methods Biomech Biomed Eng. 1997;1(1):15–23. doi: 10.1080/01495739708936692.CrossRefGoogle Scholar
  17. 17.
    Zakowska M. Three-dimensional methods of quantifying anisotropy of trabecular bone. Krakowska Konferencja Mlodych Uczonych. 2009.Google Scholar
  18. 18.
    Brunet-Imbault B, Lemineur G, Chappard C, Harba R, Benhamou CL. A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform. BMC Med Imaging. 2005;5:4. doi: 10.1186/1471-2342-5-4.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Odgaard A. Three-dimensional methods for quantification of cancellous bone architecture. Bone. 1997;20(4):315–28.CrossRefPubMedGoogle Scholar
  20. 20.
    Seeuws S, Jacques P, Van Praet J, Drennan M, Coudenys J, Decruy T, et al. A multiparameter approach to monitor disease activity in collagen-induced arthritis. Arthritis Res Ther. 2010;12(4):R160. doi: 10.1186/ar3119.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Vermeirsch H, Nuydens RM, Salmon PL, Meert TF. Bone cancer pain model in mice: evaluation of pain behavior, bone destruction and morphine sensitivity. Pharmacol Biochem Behav. 2004;79(2):243–51. doi: 10.1016/j.pbb.2004.07.011.CrossRefPubMedGoogle Scholar
  22. 22.
    Schopf L, Savinainen A, Anderson K, Kujawa J, DuPont M, Silva M, et al. IKKbeta inhibition protects against bone and cartilage destruction in a rat model of rheumatoid arthritis. Arthritis Rheum. 2006;54(10):3163–73. doi: 10.1002/art.22081.CrossRefPubMedGoogle Scholar
  23. 23.
    Axmann R, Herman S, Zaiss M, Franz S, Polzer K, Zwerina J, et al. CTLA-4 directly inhibits osteoclast formation. Ann Rheum Dis. 2008;67(11):1603–9. doi: 10.1136/ard.2007.080713.CrossRefPubMedGoogle Scholar
  24. 24.
    Yang SY, Mayton L, Wu B, Goater JJ, Schwarz EM, Wooley PH. Adeno-associated virus-mediated osteoprotegerin gene transfer protects against particulate polyethylene-induced osteolysis in a murine model. Arthritis Rheum. 2002;46(9):2514–23. doi: 10.1002/art.10527.CrossRefPubMedGoogle Scholar
  25. 25.
    Borah B, Gross GJ, Dufresne TE, Smith TS, Cockman MD, Chmielewski PA, et al. Three-dimensional microimaging (MRmicroI and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. The Anat record. 2001;265(2):101–10.CrossRefGoogle Scholar
  26. 26.
    Le Goff B, Soltner E, Charrier C, Maugars Y, Redini F, Heymann D, et al. A combination of methotrexate and zoledronic acid prevents bone erosions and systemic bone mass loss in collagen induced arthritis. Arthritis Res Ther. 2009;11(6):R185. doi: 10.1186/ar2877.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Nishida S, Tsurukami H, Sakai A, Sakata T, Ikeda S, Tanaka M, et al. Stage-dependent changes in trabecular bone turnover and osteogenic capacity of marrow cells during development of type II collagen-induced arthritis in mice. Bone. 2002;30(6):872–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Yamane I, Hagino H, Okano T, Enokida M, Yamasaki D, Teshima R. Effect of minodronic acid (ONO-5920) on bone mineral density and arthritis in adult rats with collagen-induced arthritis. Arthritis Rheum. 2003;48(6):1732–41. doi: 10.1002/art.10987.CrossRefPubMedGoogle Scholar
  29. 29.
    Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL. Bone fragility and collagen cross-links. J Bone Miner Res. 2004;19(12):2000–4. doi: 10.1359/JBMR.040820.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Ramasamy JG, Akkus O. Local variations in the micromechanical properties of mouse femur: the involvement of collagen fiber orientation and mineralization. J Biomech. 2007;40(4):910–8. doi: 10.1016/j.jbiomech.2006.03.002.CrossRefPubMedGoogle Scholar
  31. 31.
    Zaiss MM, Frey B, Hess A, Zwerina J, Luther J, Nimmerjahn F, et al. Regulatory T cells protect from local and systemic bone destruction in arthritis. J Immunol. 2010;184(12):7238–46. doi: 10.4049/jimmunol.0903841.CrossRefPubMedGoogle Scholar
  32. 32.
    Kleinau S, Erlandsson H, Holmdahl R, Klareskog L. Adjuvant oils induce arthritis in the DA rat. I. Characterization of the disease and evidence for an immunological involvement. J Autoimmun. 1991;4(6):871–80.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Anand Dusad
    • 1
    • 2
  • Michael J. Duryee
    • 1
    • 2
  • Anita T. Shaw
    • 6
  • Lynell W. Klassen
    • 1
    • 2
  • Daniel R. Anderson
    • 5
  • Dong Wang
    • 3
  • Ke Ren
    • 3
  • Ellen M. Gravallese
    • 6
  • James R. O’Dell
    • 1
    • 2
  • Ted R. Mikuls
    • 1
    • 2
  • Geoffrey M. Thiele
    • 1
    • 2
    • 4
  1. 1.Experimental Immunology LaboratoryOmaha Veterans Administration Medical CenterOmahaUSA
  2. 2.Experimental Immunology Laboratory, Division of Rheumatology, Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaUSA
  4. 4.Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA
  5. 5.Experimental Immunology Laboratory, Division of Cardiology, Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaUSA
  6. 6.Department of Medicine, Division of RheumatologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations