Humanized mice: novel model for studying mechanisms of human immune-based therapies

Abstract

The lack of relevant animal models is the major bottleneck for understanding human immunology and immunopathology. In the last few years, a novel model of humanized mouse has been successfully employed to investigate some of the most critical questions in human immunology. We have set up and tested in our laboratory the latest technology for generating mice with a human immune system by reconstituting newborn immunodeficient NOD/SCID-γ −/−c mice with human fetal liver-derived hematopoietic stem cells. These humanized mice have been deemed most competent as human models in a thorough comparative study with other humanized mouse technologies. Lymphocytes in these mice are of human origin while other hematopoietic cells are chimeric, partly of mouse and partly of human origin. We demonstrate that human CD8 T lymphocytes in humanized mice are fully responsive to our novel cell-based secreted heat shock protein gp96HIV-Ig vaccine. We also show that the gp96HIV-Ig vaccine induces powerful mucosal immune responses in the rectum and the vagina, which are thought to be required for protection from HIV infection. We posit the hypothesis that vaccine approaches tested in humanized mouse models can generate data rapidly, economically and with great flexibility (genetic manipulations are possible), to be subsequently tested in larger nonhuman primate models and humans.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Browning J, Horner JW, Pettoello-Mantovani M, Raker C, Yurasov S, DePinho RA, et al. Mice transgenic for human CD4 and CCR5 are susceptible to HIV infection. Proc Natl Acad Sci USA. 1997;94(26):14637–41.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  2. 2.

    Lores P, Boucher V, Mackay C, Pla M, Von Boehmer H, Jami J, et al. Expression of human CD4 in transgenic mice does not confer sensitivity to human immunodeficiency virus infection. AIDS Res Hum Retroviruses. 1992;8(12):2063–71.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Sawada S, Gowrishankar K, Kitamura R, Suzuki M, Suzuki G, Tahara S, et al. Disturbed CD4+ T cell homeostasis and in vitro HIV-1 susceptibility in transgenic mice expressing T cell line-tropic HIV-1 receptors. J Exp Med. 1998;187(9):1439–49.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  4. 4.

    Brehm MA, Cuthbert A, Yang C, Miller DM, DiIorio P, Laning J, et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation. Clin Immunol. 2010;135(1):84–98.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  5. 5.

    Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98. doi:10.1038/nri3311.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  6. 6.

    Gorantla S, Santos K, Meyer V, Dewhurst S, Bowers WJ, Federoff HJ, et al. Human dendritic cells transduced with herpes simplex virus amplicons encoding human immunodeficiency virus type 1 (HIV-1) gp120 elicit adaptive immune responses from human cells engrafted into NOD/SCID mice and confer partial protection against HIV-1 challenge. J Virol. 2005;79(4):2124–32. doi:10.1128/JVI.79.4.2124- 2132.2005.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  7. 7.

    Nakata H, Maeda K, Miyakawa T, Shibayama S, Matsuo M, Takaoka Y, et al. Potent anti-R5 human immunodeficiency virus type 1 effects of a CCR5 antagonist, AK602/ONO4128/GW873140, in a novel human peripheral blood mononuclear cell nonobese diabetic-SCID, interleukin-2 receptor gamma-chain-knocked-out AIDS mouse model. J Virol. 2005;79(4):2087–96. doi:10.1128/JVI.79.4.2087- 2096.2005.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  8. 8.

    McKinney DM, Lewinsohn DA, Riddell SR, Greenberg PD, Mosier DE. The antiviral activity of HIV-specific CD8+ CTL clones is limited by elimination due to encounter with HIV-infected targets. J Immunol. 1999;163(2):861–7.

    CAS  PubMed  Google Scholar 

  9. 9.

    Mosier DE, Gulizia RJ, Baird SM, Wilson DB, Spector DH, Spector SA. Human immunodeficiency virus infection of human-PBL-SCID mice. Science. 1991;251(4995):791–4.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM. Infection of the SCID-hu mouse by HIV-1. Science. 1988;242(4886):1684–6.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Carballido JM, Namikawa R, Carballido-Perrig N, Antonenko S, Roncarolo MG, de Vries JE. Generation of primary antigen-specific human T- and B-cell responses in immunocompetent SCID-hu mice. Nat Med. 2000;6(1):103–6. doi:10.1038/71434.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988;335(6187):256–9. doi:10.1038/335256a0.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995;154(1):180–91.

    CAS  PubMed  Google Scholar 

  14. 14.

    Hesselton RM, Greiner DL, Mordes JP, Rajan TV, Sullivan JL, Shultz LD. High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis. 1995;172(4):974–82.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    van Rijn RS, Simonetti ER, Hagenbeek A, Hogenes MC, de Weger RA, Canninga-van Dijk MR, et al. A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2−/− gammac−/− double-mutant mice. Blood. 2003;102(7):2522–31. doi:10.1182/blood-2002-10-3241.

    Article  PubMed  Google Scholar 

  16. 16.

    Rochman Y, Spolski R, Leonard WJ. New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol. 2009;9(7):480–90. doi:10.1038/nri2580.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. 17.

    Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood. 2005;106(5):1565–73. doi:10.1182/blood-2005-02-0516.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  18. 18.

    Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100(9):3175–82. doi:10.1182/blood-2001-12-0207.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Legrand N, Weijer K, Spits H. Experimental models to study development and function of the human immune system in vivo. J Immunol. 2006;176(4):2053–8.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304(5667):104–7. doi:10.1126/science.1093933.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Brehm MA, Shultz LD, Greiner DL. Humanized mouse models to study human diseases. Curr Opin Endocrinol Diabetes Obes. 2010;17(2):120–5. doi:10.1097/MED.0b013e328337282f.

    PubMed Central  Article  PubMed  Google Scholar 

  23. 23.

    Stoddart CA, Maidji E, Galkina SA, Kosikova G, Rivera JM, Moreno ME, et al. Superior human leukocyte reconstitution and susceptibility to vaginal HIV transmission in humanized NOD-scid IL-2Rgamma(−/−) (NSG) BLT mice. Virology. 2011;417(1):154–60. doi:10.1016/j.virol.2011.05.013.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  24. 24.

    King M, Pearson T, Shultz LD, Leif J, Bottino R, Trucco M, et al. A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin Immunol. 2008;126(3):303–14. doi:10.1016/j.clim.2007.11.001.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Brehm MA, Cuthbert A, Yang C, Miller DM, DiIorio P, Laning J, et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation. Clin Immunol. 2010;135(1):84–98. doi:10.1016/j.clim.2009.12.008.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  26. 26.

    Jiang Q, Zhang L, Wang R, Jeffrey J, Washburn ML, Brouwer D, et al. FoxP3+ CD4+ regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2−/− gammaC−/− mice in vivo. Blood. 2008;112(7):2858–68. doi:10.1182/blood-2008-03-145946.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  27. 27.

    King MA, Covassin L, Brehm MA, Racki W, Pearson T, Leif J, et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol. 2009;157(1):104–18. doi:10.1111/j.1365-2249.2009.03933.x.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. 28.

    Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118–30. doi:10.1038/nri2017.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988;241(4873):1632–9.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Covassin L, Jangalwe S, Jouvet N, Laning J, Burzenski L, Shultz LD, et al. Human immune system development and survival of non-obese diabetic (NOD)-scid IL2rgamma(null) (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells. Clin Exp Immunol. 2013;174(3):372–88. doi:10.1111/cei.12180.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  31. 31.

    Gimeno R, Weijer K, Voordouw A, Uittenbogaart CH, Legrand N, Alves NL, et al. Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2−/− gammac−/− mice: functional inactivation of p53 in developing T cells. Blood. 2004;104(13):3886–93. doi:10.1182/blood-2004-02-0656.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Zhang L, Su L. HIV-1 immunopathogenesis in humanized mouse models. Cell Mol Immunol. 2012;9(3):237–44. doi:10.1038/cmi.2012.7.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  33. 33.

    Czechowicz A, Kraft D, Weissman IL, Bhattacharya D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science. 2007;318(5854):1296–9. doi:10.1126/science.1149726.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  34. 34.

    Notta F, Doulatov S, Dick JE. Engraftment of human hematopoietic stem cells is more efficient in female NOD/SCID/IL-2Rgc-null recipients. Blood. 2010;115(18):3704–7. doi:10.1182/blood-2009-10-249326.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE. Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood. 2010;116(2):193–200. doi:10.1182/blood-2010-02-271841.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Wege AK, Melkus MW, Denton PW, Estes JD, Garcia JV. Functional and phenotypic characterization of the humanized BLT mouse model. Curr Top Microbiol Immunol. 2008;324:149–65.

    CAS  PubMed  Google Scholar 

  37. 37.

    Joo SY, Chung YS, Choi B, Kim M, Kim JH, Jun TG, et al. Systemic human T cell developmental processes in humanized mice cotransplanted with human fetal thymus/liver tissue and hematopoietic stem cells. Transplantation. 2012;94(11):1095–102. doi:10.1097/TP.0b013e318270f392.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Giannelli S, Taddeo A, Presicce P, Villa ML, Della Bella S. A six-color flow cytometric assay for the analysis of peripheral blood dendritic cells. Cytometry B Clin Cytom. 2008;74(6):349–55.

    Article  PubMed  Google Scholar 

  39. 39.

    Berges BK, Akkina SR, Remling L, Akkina R. Humanized Rag2(−/−) gammac(−/−) (RAG-hu) mice can sustain long-term chronic HIV-1 infection lasting more than a year. Virology. 2010;397(1):100–3. doi:10.1016/j.virol.2009.10.034.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  40. 40.

    Strbo N, Pahwa S, Kolber MA, Gonzalez L, Fisher E, Podack ER. Cell-secreted Gp96-Ig-peptide complexes induce lamina propria and intraepithelial CD8+ cytotoxic T lymphocytes in the intestinal mucosa. Mucosal Immunol. 2010;3(2):182–92.

    Google Scholar 

  41. 41.

    Schreiber TH, Deyev VV, Rosenblatt JD, Podack ER. Tumor-induced suppression of CTL expansion and subjugation by gp96-Ig vaccination. Cancer Res. 2009;69(5):2026–33.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  42. 42.

    Oizumi S, Deyev V, Yamazaki K, Schreiber T, Strbo N, Rosenblatt J, et al. Surmounting tumor-induced immune suppression by frequent vaccination or immunization in the absence of B cells. J Immunother. 2008;31(4):394–401. doi:10.1097/CJI.0b013e31816bc74d.

    Article  PubMed  Google Scholar 

  43. 43.

    Oizumi S, Strbo N, Pahwa S, Deyev V, Podack ER. Molecular and cellular requirements for enhanced antigen cross-presentation to CD8 cytotoxic T lymphocytes. J Immunol. 2007;179(4):2310–7.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Strbo N, Oizumi S, Sotosek-Tokmadzic V, Podack ER. Perforin is required for innate and adaptive immunity induced by heat shock protein gp96. Immunity. 2003;18(3):381–90.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Yamazaki K, Nguyen T, Podack ER. Cutting edge: tumor secreted heat shock-fusion protein elicits CD8 cells for rejection. J Immunol. 1999;163(10):5178–82.

    CAS  PubMed  Google Scholar 

  46. 46.

    Podack ER, Raez LE. Allogeneic tumor-cell-based vaccines secreting endoplasmic reticulum chaperone gp96. Expert Opin Biol Ther. 2007;7(11):1679–88.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Strbo N, Vaccari M, Pahwa S, Kolber MA, Fisher E, Gonzalez L, et al. Gp96 SIV Ig immunization induces potent polyepitope specific, multifunctional memory responses in rectal and vaginal mucosa. Vaccine. 2011;29(14):2619–25. doi:10.1016/j.vaccine.2011.01.044.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  48. 48.

    Strbo N, Vaccari M, Pahwa S, Kolber MA, Doster MN, Fisher E, et al. Cutting edge: novel vaccination modality provides significant protection against mucosal infection by highly pathogenic simian immunodeficiency virus. J Immunol. 2013;190(6):2495–9. doi:10.4049/jimmunol.1202655.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  49. 49.

    Kropp LE, Garg M, Binder RJ. Ovalbumin-derived precursor peptides are transferred sequentially from gp96 and calreticulin to MHC class I in the endoplasmic reticulum. J Immunol. 2010;184(10):5619–27.

    Google Scholar 

  50. 50.

    Staron M, Yang Y, Liu B, Li J, Shen Y, Zuniga-Pflucker JC et al. gp96, an endoplasmic reticulum master chaperone for integrins and Toll-like receptors, selectively regulates early T and B lymphopoiesis. Blood. 2010;115(12):2380–90.

    Google Scholar 

  51. 51.

    Strbo N, Pahwa S, Kolber MA, Gonzalez L, Fisher E, Podack ER. Cell-secreted Gp96-Ig-peptide complexes induce lamina propria and intraepithelial CD8+ cytotoxic T lymphocytes in the intestinal mucosa. Mucosal Immunol. 2010;3(2):182–92. doi:10.1038/mi.2009.127.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work is supported by the NIAID R33 AI 073234, NCATS NIH UL1TR000460 and 1KL2TR000461, Miami-CFAR and NIH P30A1073961, Biopsychosocial Research Training In Immunology and AIDS 5T32MH018917-22, National Cancer Institute, Center for Cancer Research and support from the Alliance for Cancer Gene Therapy (ACGT), New York.

Conflict of interest

Dr. E. R. Podack and the University of Miami have financial interest and hold equity in a commercial enterprise developing this vaccine technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eckhard R. Podack.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gonzalez, L., Strbo, N. & Podack, E.R. Humanized mice: novel model for studying mechanisms of human immune-based therapies. Immunol Res 57, 326–334 (2013). https://doi.org/10.1007/s12026-013-8471-2

Download citation

Keywords

  • Humanized immunity
  • NOD/SCID-γ −/−c mice
  • Vaccine
  • gp96 chaperone