Immunologic Research

, Volume 56, Issue 2–3, pp 398–412 | Cite as

Immunostimulation in the treatment for chronic fatigue syndrome/myalgic encephalomyelitis

  • Amy D. Proal
  • Paul J. Albert
  • Trevor G. Marshall
  • Greg P. Blaney
  • Inge A. Lindseth
Treatment of Autoimmunity

Abstract

Chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME) has long been associated with the presence of infectious agents, but no single pathogen has been reliably identified in all patients with the disease. Recent studies using metagenomic techniques have demonstrated the presence of thousands of microbes in the human body that were previously undetected and unknown to science. More importantly, such species interact together by sharing genes and genetic function within communities. It follows that searching for a singular pathogen may greatly underestimate the microbial complexity potentially driving a complex disease like CFS/ME. Intracellular microbes alter the expression of human genes in order to facilitate their survival. We have put forth a model describing how multiple species—bacterial, viral, and fungal—can cumulatively dysregulate expression by the VDR nuclear receptor in order to survive and thus drive a disease process. Based on this model, we have developed an immunostimulatory therapy that is showing promise inducing both subjective and objective improvement in patients suffering from CFS/ME.

Keywords

Chronic fatigue syndrome Microbiome Immunostimulation Immunopathology Infection 

References

  1. 1.
    Komaroff AL, Cho TA. Role of infection and neurologic dysfunction in chronic fatigue syndrome. Semin Neurol. 2011;31(3):325–37.PubMedCrossRefGoogle Scholar
  2. 2.
    Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med. 1994;121(12):953–9.PubMedCrossRefGoogle Scholar
  3. 3.
    U.S. Food and Drug Administration. Drug development for myalgic encephalomyelitis and chronic fatigue syndrome (ME and CFS). 2012. http://www.fda.gov/downloads/Drugs/NewsEvents/UCM320310.pdf.
  4. 4.
    Fluge O, Bruland O, Risa K, Storstein A, Kristoffersen EK, Sapkota D, et al. Benefit from B-lymphocyte depletion using the anti-CD20 antibody rituximab in chronic fatigue syndrome. A double-blind and placebo-controlled study. PLoS One. 2011;6(10):e26358. doi:10.1371/journal.pone.0026358.PubMedCrossRefGoogle Scholar
  5. 5.
    Ortega-Hernandez OD, Shoenfeld Y. Infection, vaccination, and autoantibodies in chronic fatigue syndrome, cause or coincidence? Ann N Y Acad Sci. 2009;1173:600–9. doi:10.1111/j.1749-6632.2009.04799.x.PubMedCrossRefGoogle Scholar
  6. 6.
    Moriyama K, Ando C, Tashiro K, Kuhara S, Okamura S, Nakano S, et al. Polymerase chain reaction detection of bacterial 16S rRNA gene in human blood. Microbiol Immunol. 2008;52(7):375–82. doi:10.1111/j.1348-0421.2008.00048.x.PubMedCrossRefGoogle Scholar
  7. 7.
    Nikkari S, McLaughlin IJ, Bi W, Dodge DE, Relman DA. Does blood of healthy subjects contain bacterial ribosomal DNA? J Clin Microbiol. 2001;39(5):1956–9. doi:10.1128/jcm.39.5.1956-1959.2001.PubMedCrossRefGoogle Scholar
  8. 8.
    Katon W, Russo J, Ashley RL, Buchwald D. Infectious mononucleosis: psychological symptoms during acute and subacute phases of illness. Gen Hosp Psychiatry. 1999;21(1):21–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Benjamin JE, Hoyt RC. Disability following postvaccinal (yellow fever) hepatitis. J Am Med Assoc. 1945;128(5):319–24.CrossRefGoogle Scholar
  10. 10.
    Hickie I, Davenport T, Wakefield D, Vollmer-Conna U, Cameron B, Vernon SD, et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ. 2006;333(7568):575. doi:10.1136/bmj.38933.585764.AE.PubMedCrossRefGoogle Scholar
  11. 11.
    Naess H, Nyland M, Hausken T, Follestad I, Nyland HI. Chronic fatigue syndrome after Giardia enteritis: clinical characteristics, disability and long-term sickness absence. BMC Gastroenterol. 2012;12:13. doi:10.1186/1471-230x-12-13.PubMedCrossRefGoogle Scholar
  12. 12.
    Lerner AM, Beqaj SH, Deeter RG, Fitzgerald JT. IgM serum antibodies to Epstein-Barr virus are uniquely present in a subset of patients with the chronic fatigue syndrome. In Vivo. 2004;18(2):101–6.PubMedGoogle Scholar
  13. 13.
    Lerner AM, Dworkin HJ, Sayyed T, Chang CH, Fitzgerald JT, Beqaj S, et al. Prevalence of abnormal cardiac wall motion in the cardiomyopathy associated with incomplete multiplication of Epstein-barr Virus and/or cytomegalovirus in patients with chronic fatigue syndrome. In Vivo. 2004;18(4):417–24.PubMedGoogle Scholar
  14. 14.
    Fremont M, Metzger K, Rady H, Hulstaert J, De Meirleir K. Detection of herpesviruses and parvovirus B19 in gastric and intestinal mucosa of chronic fatigue syndrome patients. In Vivo. 2009;23(2):209–13.PubMedGoogle Scholar
  15. 15.
    Nijs J, Nicolson GL, De Becker P, Coomans D, De Meirleir K. High prevalence of Mycoplasma infections among European chronic fatigue syndrome patients. Examination of four Mycoplasma species in blood of chronic fatigue syndrome patients. FEMS Immunol Med Microbiol. 2002;34(3):209–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Clamp M, Fry B, Kamal M, Xie X, Cuff J, Lin MF, et al. Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci USA. 2007;104(49):19428–33. doi:10.1073/pnas.0709013104.PubMedCrossRefGoogle Scholar
  17. 17.
    Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466(7304):334–8. doi:10.1038/nature09199.PubMedCrossRefGoogle Scholar
  18. 18.
    Pride DT, Salzman J, Haynes M, Rohwer F, Davis-Long C, White RA 3rd, et al. Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J. 2012;6(5):915–26. doi:10.1038/ismej.2011.169.PubMedCrossRefGoogle Scholar
  19. 19.
    Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH, Wortman JR, et al. A catalog of reference genomes from the human microbiome. Science. 2010;328(5981):994–9. doi:10.1126/science.1183605.PubMedCrossRefGoogle Scholar
  20. 20.
    Nasidze I, Li J, Quinque D, Tang K, Stoneking M. Global diversity in the human salivary microbiome. Genome Res. 2009;19(4):636–43. doi:10.1101/gr.084616.108.PubMedCrossRefGoogle Scholar
  21. 21.
    McDonnell M, Liang Y, Noronha A, Coukos J, Kasper DL, Farraye FA, et al. Systemic Toll-like receptor ligands modify B-cell responses in human inflammatory bowel disease. Inflamm Bowel Dis. 2011;17(1):298–307. doi:10.1002/ibd.21424.PubMedCrossRefGoogle Scholar
  22. 22.
    Kozarov E. Bacterial invasion of vascular cell types: vascular infectology and atherogenesis. Future Cardiol. 2012;8(1):123–38. doi:10.2217/fca.11.75.PubMedCrossRefGoogle Scholar
  23. 23.
    Rafferty B, Dolgilevich S, Kalachikov S, Morozova I, Ju J, Whittier S, et al. Cultivation of Enterobacter hormaechei from human atherosclerotic tissue. J Atheroscler Thromb. 2011;18(1):72–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Amar J, Serino M, Lange C, Chabo C, Iacovoni J, Mondot S, et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. 2011;54(12):3055–61. doi:10.1007/s00125-011-2329-8.PubMedCrossRefGoogle Scholar
  25. 25.
    DiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM, Gotsch F, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One. 2008;3(8):e3056.PubMedCrossRefGoogle Scholar
  26. 26.
    Hood L. Tackling the microbiome. Science. 2012;336(6086):1209. doi:10.1126/science.1225475.PubMedCrossRefGoogle Scholar
  27. 27.
    Mondot S, Kang S, Furet JP, de Carcer AD, McSweeney C, Morrison M, et al. Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis. 2011;17(1):185–92. doi:10.1002/ibd.21436.PubMedCrossRefGoogle Scholar
  28. 28.
    Tana C, Umesaki Y, Imaoka A, Handa T, Kanazawa M, Fukudo S. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil. 2010;22(5):512–9, e114–5. doi:10.1111/j.1365-2982.2009.01427.x.
  29. 29.
    Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol. 2011;7(10):569–78. doi:10.1038/nrrheum.2011.121.PubMedGoogle Scholar
  30. 30.
    Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G et al. Toward defining the autoimmune microbiome for type 1 diabetes. Isme J. 2010. doi:10.1038/ismej.2010.92.
  31. 31.
    Burcelin R, Serino M, Chabo C, Blasco-Baque V, Amar J. Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol. 2011;48(4):257–73. doi:10.1007/s00592-011-0333-6.PubMedCrossRefGoogle Scholar
  32. 32.
    Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–70. doi:10.1038/nrg3182.PubMedGoogle Scholar
  33. 33.
    McMahon AW, Schmitt P, Patterson JF, Rothman E. Personality differences between inflammatory bowel disease patients and their healthy siblings. Psychosom Med. 1973;35(2):91–103.PubMedGoogle Scholar
  34. 34.
    Lepage P, Hasler R, Spehlmann ME, Rehman A, Zvirbliene A, Begun A, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011;141(1):227–36. doi:10.1053/j.gastro.2011.04.011.PubMedCrossRefGoogle Scholar
  35. 35.
    Kilic A, Gulec MY, Gul U, Gulec H. Temperament and character profile of patients with psoriasis. J Eur Acad Dermatol Venereol. 2008;22(5):537–42. doi:10.1111/j.1468-3083.2007.02460.x.PubMedCrossRefGoogle Scholar
  36. 36.
    Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3(7):e2719. doi:10.1371/journal.pone.0002719.PubMedCrossRefGoogle Scholar
  37. 37.
    Knapp PH, Nemetz SJ. Personality variations in bronchial asthma; a study of forty patients: notes on the relationship to psychosis and the problem of measuring maturity. Psychosom Med. 1957;19(6):443–65.PubMedGoogle Scholar
  38. 38.
    Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bonnelykke K, et al. Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med. 2007;357(15):1487–95. doi:10.1056/NEJMoa052632.PubMedCrossRefGoogle Scholar
  39. 39.
    Chang AH, Parsonnet J. Role of bacteria in oncogenesis. Clin Microbiol Rev. 2010;23(4):837–57. doi:10.1128/cmr.00012-10.PubMedCrossRefGoogle Scholar
  40. 40.
    Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe. 2011;10(4):324–35. doi:10.1016/j.chom.2011.10.003.PubMedCrossRefGoogle Scholar
  41. 41.
    Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012. doi:10.1126/science.1224820.
  42. 42.
    Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, et al. Moving pictures of the human microbiome. Genome Biol. 2011;12(5):R50. doi:10.1186/gb-2011-12-5-r50.PubMedCrossRefGoogle Scholar
  43. 43.
    Santiago GL, Cools P, Verstraelen H, Trog M, Missine G, El Aila N, et al. Longitudinal study of the dynamics of vaginal microflora during two consecutive menstrual cycles. PLoS One. 2011;6(11):e28180. doi:10.1371/journal.pone.0028180.PubMedCrossRefGoogle Scholar
  44. 44.
    Bogaert D, Keijser B, Huse S, Rossen J, Veenhoven R, van Gils E, et al. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PLoS One. 2011;6(2):e17035. doi:10.1371/journal.pone.0017035.PubMedCrossRefGoogle Scholar
  45. 45.
    Booijink CC, El-Aidy S, Rajilic-Stojanovic M, Heilig HG, Troost FJ, Smidt H, et al. High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol. 2010;12(12):3213–27. doi:10.1111/j.1462-2920.2010.02294.x.PubMedCrossRefGoogle Scholar
  46. 46.
    Proal AD, Albert PJ, Marshall TG. Autoimmune disease and the human metagenome. In: Nelson KE, editor. Metagenomics of the human body. New York: Springer; 2010. p. 231–75.Google Scholar
  47. 47.
    Juillard F, Bazot Q, Mure F, Tafforeau L, Macri C, Rabourdin-Combe C, et al. Epstein-Barr virus protein EB2 stimulates cytoplasmic mRNA accumulation by counteracting the deleterious effects of SRp20 on viral mRNAs. Nucleic Acids Res. 2012;40(14):6834–49. doi:10.1093/nar/gks319.PubMedCrossRefGoogle Scholar
  48. 48.
    Hacker G, Kirschnek S, Fischer SF. Apoptosis in infectious disease: how bacteria interfere with the apoptotic apparatus. Med Microbiol Immunol. 2006;195(1):11–9. doi:10.1007/s00430-005-0239-4.PubMedCrossRefGoogle Scholar
  49. 49.
    Meresse S, Steele-Mortimer O, Moreno E, Desjardins M, Finlay B, Gorvel JP. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nat Cell Biol. 1999;1(7):E183–8. doi:10.1038/15620.PubMedCrossRefGoogle Scholar
  50. 50.
    Muller MP, Peters H, Blumer J, Blankenfeldt W, Goody RS, Itzen A. The legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science. 2010. doi:10.1126/science.1192276.
  51. 51.
    Salinas-Carmona MC, Zuniga JM, Perez-Rivera LI, Segoviano-Ramirez JC, Vazquez-Marmolejo AV. Nocardia brasiliensis Modulates IFN-gamma, IL-10, and IL-12 cytokine production by macrophages from BALB/c Mice. J Interferon Cytokine Res. 2009;29(5):263–71. doi:10.1089/jir.2008.0059.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhao L, Shen J. Whole-body systems approaches for gut microbiota-targeted, preventive healthcare. J Biotechnol. 2010;149(3):183–90. doi:10.1016/j.jbiotec.2010.02.008.PubMedCrossRefGoogle Scholar
  53. 53.
    Xu Y, Xie J, Li Y, Yue J, Chen J, Chunyu L, et al. Using a cDNA microarray to study cellular gene expression altered by Mycobacterium tuberculosis. Chin Med J. 2003;116(7):1070–3.PubMedGoogle Scholar
  54. 54.
    Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol. 2007;179(4):2060–3.PubMedGoogle Scholar
  55. 55.
    Sonawane A, Santos JC, Mishra BB, Jena P, Progida C, Sorensen OE, et al. Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages. Cell Microbiol. 2011;13(10):1601–17. doi:10.1111/j.1462-5822.2011.01644.x.PubMedCrossRefGoogle Scholar
  56. 56.
    Nickel D, Busch M, Mayer D, Hagemann B, Knoll V, Stenger S. Hypoxia triggers the expression of human beta defensin 2 and antimicrobial activity against Mycobacterium tuberculosis in human macrophages. J Immunol. 2012;188(8):4001–7. doi:10.4049/jimmunol.1100976.PubMedCrossRefGoogle Scholar
  57. 57.
    Corrales-Garcia LL, Possani LD, Corzo G. Expression systems of human beta-defensins: vectors, purification and biological activities. Amino Acids. 2011;40(1):5–13. doi:10.1007/s00726-010-0493-7.PubMedCrossRefGoogle Scholar
  58. 58.
    Krishnakumari V, Rangaraj N, Nagaraj R. Antifungal activities of human beta-defensins HBD-1 to HBD-3 and their C-terminal analogs Phd1 to Phd3. Antimicrob Agents Chemother. 2009;53(1):256–60. doi:10.1128/AAC.00470-08.PubMedCrossRefGoogle Scholar
  59. 59.
    Nakatsuji T, Gallo RL. Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol. 2012;132(3 Pt 2):887–95. doi:10.1038/jid.2011.387.PubMedCrossRefGoogle Scholar
  60. 60.
    Yenamandra SP, Lundin A, Arulampalam V, Yurchenko M, Pettersson S, Klein G, et al. Expression profile of nuclear receptors upon Epstein—Barr virus induced B cell transformation. Exp Oncol. 2009;31(2):92–6.PubMedGoogle Scholar
  61. 61.
    Liu PT, Wheelwright M, Teles R, Komisopoulou E, Edfeldt K, Ferguson B, et al. MicroRNA-21 targets the vitamin D-dependent antimicrobial pathway in leprosy. Nat Med. 2012;18(2):267–73. doi:10.1038/nm.2584.PubMedCrossRefGoogle Scholar
  62. 62.
    Marshall TG. Bacterial capnine blocks transcription of human antimicrobial peptides. In: Third international conference on metagenomics; July 11–13; San Diego, CA 2007.Google Scholar
  63. 63.
    Coughlan CA, Chotirmall SH, Renwick J, Hassan T, Boon Low T, Bergsson G et al. The effect of Aspergillus fumigatus infection on Vitamin D receptor expression in cystic fibrosis. Am J Respir Crit Care Med. 2012. doi:10.1164/rccm.201203-0478OC.
  64. 64.
    Blaney GP, Albert PJ, Proal AD. Vitamin D metabolites as clinical markers in autoimmune and chronic disease. Ann N Y Acad Sci. 2009;1173:384–90. doi:10.1111/j.1749-6632.2009.04875.x.PubMedCrossRefGoogle Scholar
  65. 65.
    Marshall TG. Vitamin D discovery outpaces FDA decision making. BioEssays. 2008;30(2):173–82.PubMedCrossRefGoogle Scholar
  66. 66.
    Proal AD, Albert PJ, Marshall TG. Dysregulation of the vitamin D nuclear receptor may contribute to the higher prevalence of some autoimmune diseases in women. Ann N Y Acad Sci. 2009;1173:252–9. doi:10.1111/j.1749-6632.2009.04672.x.PubMedCrossRefGoogle Scholar
  67. 67.
    Silverman MN, Heim CM, Nater UM, Marques AH, Sternberg EM. Neuroendocrine and immune contributors to fatigue. PM R. 2010;2(5):338–46. doi:10.1016/j.pmrj.2010.04.008.PubMedCrossRefGoogle Scholar
  68. 68.
    Brahmachary M, Schonbach C, Yang L, Huang E, Tan SL, Chowdhary R, et al. Computational promoter analysis of mouse, rat and human antimicrobial peptide-coding genes. BMC Bioinf. 2006;7(Suppl 5):S8.CrossRefGoogle Scholar
  69. 69.
    Krishnadev O, Srinivasan N. Prediction of protein–protein interactions between human host and a pathogen and its application to three pathogenic bacteria. Int J Biol Macromol. 2011;48(4):613–9. doi:10.1016/j.ijbiomac.2011.01.030.PubMedCrossRefGoogle Scholar
  70. 70.
    Schutzer SE, Angel TE, Liu T, Schepmoes AA, Clauss TR, Adkins JN, et al. Distinct cerebrospinal fluid proteomes differentiate post-treatment lyme disease from chronic fatigue syndrome. PLoS One. 2011;6(2):e17287. doi:10.1371/journal.pone.0017287.PubMedCrossRefGoogle Scholar
  71. 71.
    Oakley BB, Fiedler TL, Marrazzo JM, Fredricks DN. Diversity of human vaginal bacterial communities and associations with clinically defined bacterial vaginosis. Appl Environ Microbiol. 2008;74(15):4898–909. doi:10.1128/aem.02884-07.PubMedCrossRefGoogle Scholar
  72. 72.
    Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55(2):205–11. doi:10.1136/gut.2005.073817.PubMedCrossRefGoogle Scholar
  73. 73.
    Maes M, Mihaylova I, Leunis JC. Increased serum IgA and IgM against LPS of enterobacteria in chronic fatigue syndrome (CFS): indication for the involvement of gram-negative enterobacteria in the etiology of CFS and for the presence of an increased gut-intestinal permeability. J Affect Disord. 2007;99(1–3):237–40. doi:10.1016/j.jad.2006.08.021.PubMedCrossRefGoogle Scholar
  74. 74.
    Gonzalez A, Stombaugh J, Lozupone C, Turnbaugh PJ, Gordon JI, Knight R. The mind-body-microbial continuum. Dialogues Clin Neurosci. 2011;13(1):55–62.PubMedGoogle Scholar
  75. 75.
    Bassi N, Amital D, Amital H, Doria A, Shoenfeld Y. Chronic fatigue syndrome: characteristics and possible causes for its pathogenesis. Isr Med Assoc J. 2008;10(1):79–82.PubMedGoogle Scholar
  76. 76.
    Konstantinov K, von Mikecz A, Buchwald D, Jones J, Gerace L, Tan EM. Autoantibodies to nuclear envelope antigens in chronic fatigue syndrome. J Clin Invest. 1996;98(8):1888–96. doi:10.1172/JCI118990.PubMedCrossRefGoogle Scholar
  77. 77.
    Lekakh IV, Rott GM, Poverennyi AM. “Masked” autoantibodies from the serum of healthy blood donors cross-reacting with DNA and bacterial lipopolysaccharides. Biull Eksp Biol Med. 1991;111(5):516–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Barzilai O, Ram M, Shoenfeld Y. Viral infection can induce the production of autoantibodies. Curr Opin Rheumatol. 2007;19(6):636–43.PubMedCrossRefGoogle Scholar
  79. 79.
    Berlin T, Zandman-Goddard G, Blank M, Matthias T, Pfeiffer S, Weis I, et al. Autoantibodies in nonautoimmune individuals during infections. Ann N Y Acad Sci. 2007;1108:584–93.PubMedCrossRefGoogle Scholar
  80. 80.
    Tanaka S, Kuratsune H, Hidaka Y, Hakariya Y, Tatsumi KI, Takano T, et al. Autoantibodies against muscarinic cholinergic receptor in chronic fatigue syndrome. Int J Mol Med. 2003;12(2):225–30.PubMedGoogle Scholar
  81. 81.
    Al-Mofada SM. Neonatal Haemophilus influenzae infections. J Infect. 1994;29(3):283–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Merino G, Carranza-Lira S, Murrieta S, Rodriguez L, Cuevas E, Moran C. Bacterial infection and semen characteristics in infertile men. Arch Androl. 1995;35(1):43–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Weyermann M, Rothenbacher D, Brenner H. Acquisition of Helicobacter pylori infection in early childhood: independent contributions of infected mothers, fathers, and siblings. Am J Gastroenterol. 2009;104(1):182–9. doi:10.1038/ajg.2008.61.PubMedCrossRefGoogle Scholar
  84. 84.
    Sarkola M, Rintala M, Grenman S, Syrjanen S. Human papillomavirus DNA detected in breast milk. Pediatr Infect Dis J. 2008;27(6):557–8. doi:10.1097/INF.0b013e318169ef47.PubMedCrossRefGoogle Scholar
  85. 85.
    Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. Early Human Dev. 2010;86(Suppl 1):13–5. doi:10.1016/j.earlhumdev.2010.01.004.CrossRefGoogle Scholar
  86. 86.
    Kembel SW, Jones E, Kline J, Northcutt D, Stenson J, Womack AM, et al. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. 2012;6(8):1469–79. doi:10.1038/ismej.2011.211.PubMedCrossRefGoogle Scholar
  87. 87.
    Pinto A, Xi C, Raskin L. Bacterial community structure in the drinking water microbiome is governed by filtration processes. Environ Sci Technol. 2012.Google Scholar
  88. 88.
    Vignaroli C, Zandri G, Aquilanti L, Pasquaroli S, Biavasco F. Multidrug-resistant enterococci in animal meat and faeces and co-transfer of resistance from an Enterococcus durans to a human Enterococcus faecium. Curr Microbiol. 2011;62(5):1438–47. doi:10.1007/s00284-011-9880-x.PubMedCrossRefGoogle Scholar
  89. 89.
    U.S. Census Bureau. Table 1308. U.S. exports and general imports by selected SITC Commodity Groups: 2000 to 2010. Statistical Abstract of the United States: 2012. 2012.Google Scholar
  90. 90.
    FAO Trade and Markets Division. Food outlook global market analysis. 2010. http://www.fao.org/docrep/013/al969e/al969e00.pdf.
  91. 91.
    Airbus. Global Market forecast 2011–2030 delivering the future. 2011. http://goo.gl/PQ2rv.
  92. 92.
    Padilla ML, Schilero GJ, Teirstein AS. Donor-acquired sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2002;19(1):18–24.PubMedGoogle Scholar
  93. 93.
    Gea-Banacloche JC. Rituximab-associated infections. Semin Hematol. 2010;47(2):187–98. doi:10.1053/j.seminhematol.2010.01.002.PubMedCrossRefGoogle Scholar
  94. 94.
    Proal AD, Albert PJ, Blaney GP, Lindseth IA, Benediktsson C, Marshall TG. Immunostimulation in the era of the metagenome. Cell Mol Immunol. 2011;8(3):213–25. doi:10.1038/cmi.2010.77.PubMedCrossRefGoogle Scholar
  95. 95.
    Marshall TG. Molecular static and dynamic analyses reveal flaw in murine model used by US FDA to detect drug carcinogenicity. Nature Precedings. 2007. http://precedings.nature.com/documents/52/version/1.
  96. 96.
    Daiichi Sankyo. Benicar (olmesartan medoxomil) tablets. 2011. http://www.benicar.com/pdf/prescribing_information.pdf.
  97. 97.
    Proud D, Turner RB, Winther B, Wiehler S, Tiesman JP, Reichling TD, et al. Gene expression profiles during in vivo human rhinovirus infection: insights into the host response. Am J Respir Crit Care Med. 2008;178(9):962–8. doi:10.1164/rccm.200805-670OC.PubMedCrossRefGoogle Scholar
  98. 98.
    Tsang CS, Samaranayake LP. Immune reconstitution inflammatory syndrome after highly active antiretroviral therapy: a review. Oral Dis. 2010;16(3):248–56. doi:10.1111/j.1601-0825.2009.01628.x.PubMedCrossRefGoogle Scholar
  99. 99.
    Agborsangaya CB, Lehtinen T, Toriola AT, Pukkala E, Surcel HM, Tedeschi R, et al. Association between Epstein-Barr virus infection and risk for development of pregnancy-associated breast cancer: joint effect with vitamin D? Eur J Cancer. 2011;47(1):116–20. doi:10.1016/j.ejca.2010.07.006.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Amy D. Proal
    • 1
  • Paul J. Albert
    • 2
  • Trevor G. Marshall
    • 1
    • 3
  • Greg P. Blaney
    • 4
  • Inge A. Lindseth
    • 1
    • 5
  1. 1.Autoimmunity Research FoundationThousand OaksUSA
  2. 2.Weill Cornell Medical CollegeNew YorkUSA
  3. 3.Murdoch UniversityPerthAustralia
  4. 4.Stillpoint CentreVancouverCanada
  5. 5.4M-klinikkenOsloNorway

Personalised recommendations