Skip to main content

Advertisement

Log in

Tissue-specific transplantation antigen P35B (TSTA3) immune response–mediated metabolism coupling cell cycle to postreplication repair network in no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) by biocomputation

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

We constructed the low-expression tissue-specific transplantation antigen P35B (TSTA3) immune response–mediated metabolism coupling cell cycle to postreplication repair network in no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) compared with high-expression (fold change ≥ 2) human hepatocellular carcinoma in GEO data set, by using integration of gene regulatory network inference method with gene ontology analysis of TSTA3-activated up- and downstream networks. Our results showed TSTA3 upstream–activated CCNB2, CKS1B, ELAVL3, GAS7, NQO1, NTN1, OCRL, PLA2G1B, REG3A, SSTR5, etc. and TSTA3 downstream–activated BAP1, BRCA1, CCL20, MCM2, MS4A2, NTN1, REG1A, TP53I11, VCAN, SLC16A3, etc. in no-tumor hepatitis/cirrhotic tissues. TSTA3-activated network enhanced the regulation of apoptosis, cyclin-dependent protein kinase activity, cell migration, insulin secretion, transcription, cell division, cell proliferation, DNA replication, postreplication repair, cell differentiation, T-cell homeostasis, neutrophil-mediated immunity, neutrophil chemotaxis, interleukin-8 production, inflammatory response, immune response, B-cell activation, humoral immune response, actin filament organization, xenobiotic metabolism, lipid metabolism, phospholipid metabolism, leukotriene biosynthesis, organismal lipid catabolism, phosphatidylcholine metabolism, arachidonic acid secretion, activation of phospholipase A2, deoxyribonucleotide biosynthesis, heterophilic cell adhesion, activation of MAPK activity, signal transduction by p53 class mediator resulting in transcription of p21 class mediator, G-protein-coupled receptor protein signaling pathway, response to toxin, acute-phase response, DNA damage response, intercellular junction assembly, cell communication, and cell recognition, as a result of inducing immune response–mediated metabolism coupling cell cycle to postreplication repair in no-tumor hepatitis/cirrhotic tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ming-Ju H, et al. Hepatitis C virus E2 protein induce reactive oxygen species (ROS)-related fibrogenesis in the HSC-T6 hepatic stellate cell line. J Cell Biochem. 2011;112(1):233–43.

    Article  PubMed  Google Scholar 

  2. Svegliati-Baroni G, et al. Insulin resistance and necroinflammation drives ductular reaction and epithelial-mesenchymal transition in chronic hepatitis C. Gut. 2011;60(1):108–15.

    Article  PubMed  Google Scholar 

  3. Bauer T, Sprinzl M, Protzer U. Immune control of hepatitis B virus. Dig Dis. 2011;29(4):423–33.

    PubMed  Google Scholar 

  4. Feng J, et al. Correction: high frequency of CD4CXCR5 TFH cells in patients with immune-active chronic hepatitis B. PLoS ONE. 2011;6(7):e21698.

    Article  PubMed  CAS  Google Scholar 

  5. Feng J, et al. High frequency of CD4+CXCR5+TFH cells in patients with immune-active chronic hepatitis B. PLoS ONE. 2011;6(7):e21698.

    Article  PubMed  CAS  Google Scholar 

  6. Roque-Cuellar MC, et al. Cellular immune responses and occult infection in seronegative heterosexual partners of chronic hepatitis C patients. J Viral Hepat. 2011;18(10):E541–9.

    Article  PubMed  CAS  Google Scholar 

  7. Svicher V, et al. Role of hepatitis B virus genetic barrier in drug-resistance and immune-escape development. Dig Liver Dis. 2011;43(12):975–83.

    Article  PubMed  CAS  Google Scholar 

  8. Tsamandas AC, et al. Oval cell proliferation in cirrhosis in rats. An experimental study. Hepatol Res. 2007;37(9):755–64.

    Article  PubMed  CAS  Google Scholar 

  9. Donato MF, et al. High rates of hepatocellular carcinoma in cirrhotic patients with high liver cell proliferative activity. Hepatology. 2001;34(3):523–8.

    Article  PubMed  CAS  Google Scholar 

  10. Sangiovanni A, et al. Hepatocyte proliferation and risk of hepatocellular carcinoma in cirrhotic patients. Am J Gastroenterol. 2001;96(5):1575–80.

    Article  PubMed  CAS  Google Scholar 

  11. Toda K, et al. Induction of hepatic stellate cell proliferation by LPS-stimulated peripheral blood mononuclear cells from patients with liver cirrhosis. J Gastroenterol. 2000;35(3):214–20.

    Article  PubMed  CAS  Google Scholar 

  12. Delhaye M, et al. Hepatocyte proliferative activity in human liver cirrhosis. J Hepatol. 1999;30(3):461–71.

    Article  PubMed  CAS  Google Scholar 

  13. Borzio M, et al. Hepatocyte proliferation rate is a powerful parameter for predicting hepatocellular carcinoma development in liver cirrhosis. Mol Pathol. 1998;51(2):96–101.

    Article  PubMed  CAS  Google Scholar 

  14. de Paula AM, et al. Cell proliferation markers in the odontogenic keratocyst: effect of inflammation. J Oral Pathol Med. 2000;29(10):477–82.

    Article  PubMed  Google Scholar 

  15. Yu E, et al. Acute inflammation of the proliferative zone of gastric mucosa in Helicobacter pylori gastritis. Pathol Res Pract. 1999;195(10):689–97.

    Article  PubMed  CAS  Google Scholar 

  16. Chang M. Dual roles of estrogen metabolism in mammary carcinogenesis. BMB Rep. 2011;44(7):423–34.

    Article  PubMed  CAS  Google Scholar 

  17. Gaglio D, et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol. 2011;7:523.

    Article  PubMed  CAS  Google Scholar 

  18. Stieber D, Abdul Rahim SA, Niclou SP, Novel ways to target brain tumour metabolism. Expert Opin Ther Targets. 2011;15(10):1227–39.

    Article  PubMed  CAS  Google Scholar 

  19. Yoshizaki T. A novel immune evasion mechanism of LMP-1, an EBV-primary oncogene, in nasopharyngeal carcinoma. Adv Otorhinolaryngol. 2011;72:157–9.

    PubMed  Google Scholar 

  20. Alavian S-M, et al. Lipid profiles and hepatitis C viral markers in HCV-infected thalassemic patients. Gut Liver. 2011;5(3):348–55.

    Article  PubMed  CAS  Google Scholar 

  21. Amet T, et al. CD59 incorporation protects hepatitis C virus against complement-mediated destruction. Hepatology. 2012;55(2):354–63.

    Article  PubMed  CAS  Google Scholar 

  22. Doi, H., et al., Dysfunctional B-cell activation in cirrhosis due to hepatitis C infection associated with disappearance of CD27 + B-cell population. Hepatology, 2011.

  23. Bagan JV, et al. Malignant transformation of proliferative verrucous leukoplakia to oral squamous cell carcinoma: A series of 55 cases. Oral Oncol. 2011;47(8):732–5.

    Article  PubMed  Google Scholar 

  24. Ernst CW, et al. Malignant transformation of an abdominal inflammatory myofibroblastic tumor with distant metastases in a child. Jbr-Btr. 2011;94(2):78–80.

    PubMed  CAS  Google Scholar 

  25. Guck J, et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J. 2005;88(5):3689–98.

    Article  PubMed  CAS  Google Scholar 

  26. Hritz I, et al. Increased p53 expression in the malignant transformation of Barrett’s esophagus is accompanied by an upward shift of the proliferative compartment. Pathol Oncol Res. 2009;15(2):183–92.

    Article  PubMed  CAS  Google Scholar 

  27. Iyengar B. Expression of proliferating cell nuclear antigen (PCNA): proliferative phase functions and malignant transformation of melanocytes. Melanoma Res. 1994;4(5):293–5.

    Article  PubMed  CAS  Google Scholar 

  28. Katori H, Nozawa A, Tsukuda M. Cell proliferation, apoptosis, and apoptosis inhibition in malignant transformation of sinonasal inverted papilloma. Acta Otolaryngol. 2007;127(5):540–6.

    Article  PubMed  CAS  Google Scholar 

  29. LeMay DR, Bucci MN, Farhat SM. Malignant transformation of recurrent meningioma with pulmonary metastases. Surg Neurol. 1989;31(5):365–8.

    Article  PubMed  CAS  Google Scholar 

  30. Lopez-Jornet P, Alonso FC. Proliferative verrucous leukoplakia and malignant transformation. J Eur Acad Dermatol Venereol. 2008;22(9):1138–9.

    Article  PubMed  CAS  Google Scholar 

  31. Muller PE, et al. Malignant transformation of a benign enchondroma of the hand to secondary chondrosarcoma with isolated pulmonary metastasis. Acta Chir Belg. 2004;104(3):341–4.

    PubMed  CAS  Google Scholar 

  32. Nagai M, et al. Proliferative potential and malignant transformation of ganglioglioma: immunohistochemical studies by MIB-1 and p53 staining. Noshuyo Byori. 1995;12(2):141–9.

    PubMed  CAS  Google Scholar 

  33. You N, et al. Tg737 inhibition results in malignant transformation in fetal liver stem/progenitor cells by promoting cell-cycle progression and differentiation arrest. Mol Carcinog. 2011. doi:10.1002/mc.20839.

  34. Jacobsen EA, et al. Growth, differentiation, and malignant transformation of pre-B cells mediated by inducible activation of v-Abl oncogene. J Immunol. 2006;176(11):6831–8.

    PubMed  CAS  Google Scholar 

  35. Pollett JB, et al. Malignant transformation of multipotent muscle-derived cells by concurrent differentiation signals. Stem Cells. 2007;25(9):2302–11.

    Article  PubMed  CAS  Google Scholar 

  36. Zheng H, et al. Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harb Symp Quant Biol. 2008;73:427–37.

    Article  PubMed  CAS  Google Scholar 

  37. Ozaki T, et al. Intramedullary spinal cord metastasis following spontaneous malignant transformation from giant cell tumor of bone 16 years after pulmonary metastasis. J Orthop Sci. 2011;16(1):119–24.

    Article  PubMed  Google Scholar 

  38. Ito H, et al. Identification of ROBO1 as a novel hepatocellular carcinoma antigen and a potential therapeutic and diagnostic target. Clin Cancer Res. 2006;12(11 Pt 1):3257–64.

    Article  PubMed  CAS  Google Scholar 

  39. Storey JD, A direct approach to false discovery rates. J R Stat Soc Ser B. 2002;64:479–98.

    Article  Google Scholar 

  40. Wang L, et al. Survivin (BIRC5) cell cycle computational network in human no-tumor hepatitis/cirrhosis and hepatocellular carcinoma transformation. J Cell Biochem. 2011;112(5):1286–94.

    Article  PubMed  CAS  Google Scholar 

  41. Wang Y, et al. Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics. 2006;22(19):2413–20.

    Article  PubMed  CAS  Google Scholar 

  42. Sun L, et al. Glycogen debranching enzyme 6 (AGL), enolase 1 (ENOSF1), ectonucleotide pyrophosphatase 2 (ENPP2_1), glutathione S-transferase 3 (GSTM3_3) and mannosidase (MAN2B2) metabolism computational network analysis between chimpanzee and human left cerebrum. Cell Biochem Biophys. 2011;61(3):493–505.

    Article  PubMed  CAS  Google Scholar 

  43. Huang J, et al. Interferon α-inducible protein 27 computational network construction and comparison between the frontal cortex of HIV encephalitis (HIVE) and HIVE-control patients. Open Genomics J. 2010; 3(1875-693X): 1–8.

    Google Scholar 

  44. Huang JX, Wang L, Jiang MH. TNFRSF11B computational development network construction and analysis between frontal cortex of HIV encephalitis (HIVE) and HIVE-control patients. J Inflamm (Lond). 2010;7:50.

    Article  CAS  Google Scholar 

  45. Sun Y, et al. Secreted phosphoprotein 1 upstream invasive network construction and analysis of lung adenocarcinoma compared with human normal adjacent tissues by integrative biocomputation. Cell Biochem Biophys. 2010;56(2–3):59–71.

    Article  PubMed  CAS  Google Scholar 

  46. Sun Y, Wang L, Lui L. Integrative decomposition procedure and Kappa statistics set up ATF2 ion binding module in malignant pleural mesothelioma (MPM). Front Electr Electron Eng China. 2008;3(4):381–7.

    Article  Google Scholar 

  47. Wang L, Huang J, Jiang M. RRM2 computational phosphoprotein network construction and analysis between no-tumor hepatitis/cirrhotic liver tissues and Human Hepatocellular Carcinoma (HCC). Cell Physiol Biochem. 2010;26(3):303–10.

    Article  PubMed  CAS  Google Scholar 

  48. Wang L, et al. AFP computational secreted network construction and analysis between human hepatocellular carcinoma (HCC) and no-tumor hepatitis/cirrhotic liver tissues. Tumour Biol. 2010;31(5):417–25.

    Article  PubMed  Google Scholar 

  49. Wang L, et al. FOS proliferating network construction in early colorectal cancer (CRC) based on integrative significant function cluster and inferring analysis. Cancer Invest. 2009;27(8):816–24.

    Article  PubMed  CAS  Google Scholar 

  50. Wang L, et al. Integrative decomposition procedure and Kappa statistics for the distinguished single molecular network construction and analysis. J Biomed Biotechnol. 2009;2009:726–8.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation in China (No. 60871100 and No. 61171114), the Returned Overseas Chinese Scholars for Scientific research Foundation of State Education Ministry, Significant Science and Technology Project for New Transgenic Biological Species (2009ZX08012-001B), Automatical Scientific Planning of Tsinghua University (20111081023 and 20111081010), and State Key Lab of Pattern Recognition Open Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wang.

Additional information

Lin Wang, Juxiang Huang, and Minghu Jiang contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Huang, J., Jiang, M. et al. Tissue-specific transplantation antigen P35B (TSTA3) immune response–mediated metabolism coupling cell cycle to postreplication repair network in no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) by biocomputation. Immunol Res 52, 258–268 (2012). https://doi.org/10.1007/s12026-012-8337-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8337-z

Keywords

Navigation