Immunologic Research

, Volume 54, Issue 1–3, pp 227–232 | Cite as

Human B cell defects in perspective

Immunology at Mount Sinai


While primary immune defects are generally considered to lead to severe and easily recognized disease in infants and children, a number of genetic defects impairing B cell function may not be clinically apparent or diagnosed until adult life. The commonest of these is common variable immune deficiency, the genetic origins of which are beginning to be at least partially understood. CVID affects ≈1/25,000 Caucasians and is characterized by a marked reduction in serum IgG, almost always in serum IgA, and reduced serum IgM in about half of all cases; these defects continue to provide an opportunity to investigate the genes necessary for B cell function in humans. Recently, a small number of genes necessary for normal B cell function have been identified in consanguineous families leading to varying degrees of hypogammaglobulinemia and loss of antibody production. In other studies, whole-exome sequencing and copy number variation, applied to large cohorts, have extended research into understanding both the genetic basis of this syndrome and the clinical phenotypes of CVID.


B cells CVID Antibody Common variable immune deficiency CD19 CD20 CD21 TACI Genome-wide study 


  1. 1.
    Notarangelo LD, Fischer A, Geha RS, Casanova JL, Chapel H, Conley ME, et al. Primary immunodeficiencies: 2009 update. J Allergy Clin Immunol. 2009;124(6):1161–78.PubMedCrossRefGoogle Scholar
  2. 2.
    Casanova JL, Abel L. Primary immunodeficiencies: a field in its infancy. Science. 2007;317(5838):617–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Waleed Al-Herz AB, Jean-Laurent Casanova, Helen Chapel, Mary Ellen Conley, Charlotte Cunningham-Rundles, Amos Etzioni, Alain Fischer, Jose Luis Franco, Raif S. Geha, Lennart Hammarström, Shigeaki Nonoyama, Luigi Daniele Notarangelo, Hans Dieter Ochs, Jennifer M. Puck, Chaim M. Roifman, Reinhard Seger and Mimi L. K. Tang. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Frontiers in immunology 2011;2:published on line 08 November 2011.Google Scholar
  4. 4.
    Fischer A. Natural mutants of the immune system: a lot to learn! Eur J Immunol. 2002;32(6):1519–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Conley ME. Hypogammaglobulinemia: fifty years later. Clin Immunol. 2002;104(3):201–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Durandy A. Hyper-IgM syndromes: a model for studying the regulation of class switch recombination and somatic hypermutation generation. Biochem Soc Trans. 2002;30(4):815–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Imai K, Slupphaug G, Lee WI, Revy P, Nonoyama S, Catalan N, et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol. 2003 Sep 7.Google Scholar
  8. 8.
    Orange JS, Glessner JT, Resnick E, Sullivan KE, Lucas M, Ferry B, et al. Genome-wide association identifies diverse causes of common variable immunodeficiency. J Allergy Clin Immunol. 2011;127(6):1360–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Cunningham-Rundles C, How I. Treat common variable immune deficiency. Blood. 2010;116(1):7–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2011 Dec 16.Google Scholar
  11. 11.
    Sanford JP, Favour CB, Tribeman MS. Absence of serum gamma globulins in an adult. N Engl J Med. 1954;250(24):1027–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Grimbacher B, Hutloff A, Schlesier M, Glocker E, Warnatz K, Drager R, et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol. 2003;4(3):261–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature. 1999;397(6716):263–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Kindler V, Zubler RH. Memory, but not naive, peripheral blood B lymphocytes differentiate into Ig-secreting cells after CD40 ligation and costimulation with IL-4 and the differentiation factors IL-2, IL-10, and IL-3. J Immunol. 1997;159(5):2085–90.PubMedGoogle Scholar
  15. 15.
    Rousset F, Garcia E, Defrance T, Peronne C, Vezzio N, Hsu DH, et al. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci U S A. 1992;89(5):1890–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Choe J, Choi YS. IL-10 interrupts memory B cell expansion in the germinal center by inducing differentiation into plasma cells. Eur J Immunol. 1998;28(2):508–15.PubMedCrossRefGoogle Scholar
  17. 17.
    Witsch EJ, Peiser M, Hutloff A, Buchner K, Dorner BG, Jonuleit H, et al. ICOS and CD28 reversely regulate IL-10 on re-activation of human effector T cells with mature dendritic cells. Eur J Immunol. 2002;32(9):2680–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Salzer U, Maul-Pavicic A, Cunningham-Rundles C, Urschel S, Belohradsky BH, Litzman J, et al. ICOS deficiency in patients with common variable immunodeficiency. Clin Immunol. 2004;113(3):234–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Takahashi N, Matsumoto K, Saito H, Nanki T, Miyasaka N, Kobata T, et al. Impaired CD4 and CD8 effector function and decreased memory T cell populations in ICOS-deficient patients. J Immunol. 2009;182(9):5515–27.PubMedCrossRefGoogle Scholar
  20. 20.
    van Zelm MC, Reisli I, van der Burg M, Castano D, van Noesel CJ, van Tol MJ, et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354(18):1901–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Carter RH, Fearon DT. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science. 1992;256(5053):105–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Kanegane H, Agematsu K, Futatani T, Sira MM, Suga K, Sekiguchi T, et al. Novel mutations in a Japanese patient with CD19 deficiency. Genes Immun. 2007;8(8):663–70.PubMedCrossRefGoogle Scholar
  23. 23.
    Vince N, Boutboul D, Mouillot G, Just N, Peralta M, Casanova JL, et al. Defects in the CD19 complex predispose to glomerulonephritis, as well as IgG1 subclass deficiency. J Allergy Clin Immunol. 2011;127(2):538–41.PubMedCrossRefGoogle Scholar
  24. 24.
    van Zelm MC, Smet J, Adams B, Mascart F, Schandene L, Janssen F, et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Investig. 2010;120(4):1265–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Maecker HT, Levy S. Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J Exp Med. 1997;185(8):1505–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Miyazaki T, Muller U, Campbell KS. Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J. 1997;16(14):4217–25.PubMedCrossRefGoogle Scholar
  27. 27.
    Tsitsikov EN, Gutierrez-Ramos JC, Geha RS. Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc Natl Acad Sci U S A. 1997;94(20):10844–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Tedder TF, Engel P. CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today. 1994;15(9):450–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Tedder TF, Boyd AW, Freedman AS, Nadler LM, Schlossman SF. The B cell surface molecule B1 is functionally linked with B cell activation and differentiation. J Immunol. 1985;135(2):973–9.PubMedGoogle Scholar
  30. 30.
    Tedder TF, Forsgren A, Boyd AW, Nadler LM, Schlossman SF. Antibodies reactive with the B1 molecule inhibit cell cycle progression but not activation of human B lymphocytes. Eur J Immunol. 1986;16(8):881–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Kuijpers TW, Bende RJ, Baars PA, Grummels A, Derks IA, Dolman KM, et al. CD20 deficiency in humans results in impaired T cell-independent antibody responses. J Clin Investig. 2010;120(1):214–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Thiel J, Kimmig L, Salzer U, Grudzien M, Lebrecht D, Hagena T, et al. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol. 2011 Oct 27.Google Scholar
  33. 33.
    Fearon DT, Carroll MC. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol. 2000;18:393–422.PubMedCrossRefGoogle Scholar
  34. 34.
    Ombrello MJ, Remmers EF, Sun G, Freeman AF, Datta S, Torabi-Parizi P, et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med. 2012;366(4):330–8.Google Scholar
  35. 35.
    Batten M, Groom J, Cachero TG, Qian F, Schneider P, Tschopp J, et al. BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med. 2000;192(10):1453–66.PubMedCrossRefGoogle Scholar
  36. 36.
    Gross JA, Dillon SR, Mudri S, Johnston J, Littau A, Roque R, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. Impaired B cell maturation in mice lacking BLyS. Immunity. 2001;15(2):289–302.PubMedCrossRefGoogle Scholar
  37. 37.
    Schiemann B, Gommerman JL, Vora K, Cachero TG, Shulga-Morskaya S, Dobles M, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001;293(5537):2111–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Yan M, Brady JR, Chan B, Lee WP, Hsu B, Harless S, et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol. 2001;11(19):1547–52.PubMedCrossRefGoogle Scholar
  39. 39.
    Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol. 2004;173(4):2245–52.PubMedGoogle Scholar
  40. 40.
    Shulga-Morskaya S, Dobles M, Walsh ME, Ng LG, MacKay F, Rao SP, et al. B cell-activating factor belonging to the TNF family acts through separate receptors to support B cell survival and T cell-independent antibody formation. J Immunol. 2004;173(4):2331–41.PubMedGoogle Scholar
  41. 41.
    Mackay F, Schneider P, Rennert P, Browning J. BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–64.PubMedCrossRefGoogle Scholar
  42. 42.
    Losi CG, Silini A, Fiorini C, Soresina A, Meini A, Ferrari S, et al. Mutational analysis of human BAFF receptor TNFRSF13C (BAFF-R) in patients with common variable immunodeficiency. J Clin Immunol. 2005;25(5):496–502.PubMedCrossRefGoogle Scholar
  43. 43.
    Warnatz K, Salzer U, Rizzi M, Fischer B, Gutenberger S, Bohm J, et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc Natl Acad Sci U S A. 2009;106(33):13945–50.PubMedCrossRefGoogle Scholar
  44. 44.
    von Bulow GU, van Deursen JM, Bram RJ. Regulation of the T-independent humoral response by TACI. Immunity. 2001;14(5):573–82.CrossRefGoogle Scholar
  45. 45.
    Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P, et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol. 2002;3(9):822–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Castigli E, Wilson SA, Scott S, Dedeoglu F, Xu S, Lam KP, et al. TACI and BAFF-R mediate isotype switching in B cells. J Exp Med. 2005;201(1):35–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Salzer U, Chapel HM, Webster AD, Pan-Hammarstrom Q, Schmitt-Graeff A, Schlesier M, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet. 2005;37(8):820–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla F, Schneider L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37(8):829–34.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang L, Radigan L, Salzer U, Behrens TW, Grimbacher B, Diaz G, et al. Transmembrane activator and calcium-modulating cyclophilin ligand interactor mutations in common variable immunodeficiency: clinical and immunologic outcomes in heterozygotes. J Allergy Clin Immunol. 2007;120(5):1178–85.PubMedCrossRefGoogle Scholar
  50. 50.
    Pan-Hammarstrom Q, Salzer U, Du L, Bjorkander J, Cunningham-Rundles C, Nelson DL, et al. Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency. Nat Genet. 2007;39(4):429–30.PubMedCrossRefGoogle Scholar
  51. 51.
    Martinez-Pomar N, Detkova D, Arostegui JI, Alvarez A, Soler-Palacin P, Vidaller A, et al. Role of TNFRSF13B variants in patients with common variable immunodeficiency. Blood. 2009;114(13):2846–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Vorechovsky I, Cullen M, Carrington M, Hammarstrom L, Webster AD. Fine mapping of IGAD1 in IgA deficiency and common variable immunodeficiency: identification and characterization of haplotypes shared by affected members of 101 multiple-case families. J Immunol. 2000;164(8):4408–16.PubMedGoogle Scholar
  53. 53.
    Kralovicova J, Hammarstrom L, Plebani A, Webster AD, Vorechovsky I. Fine-scale mapping at IGAD1 and genome-wide genetic linkage analysis implicate HLA-DQ/DR as a major susceptibility locus in selective IgA deficiency and common variable immunodeficiency. J Immunol. 2003;170(5):2765–75.PubMedGoogle Scholar
  54. 54.
    Waldrep ML, Zhuang Y, Schroeder HW Jr. Analysis of TACI mutations in CVID & RESPI patients who have inherited HLA B*44 or HLA*B8. BMC Med Genet. 2009;10:100.PubMedCrossRefGoogle Scholar
  55. 55.
    Hermaszewski RA, Webster AD. Primary hypogammaglobulinaemia: a survey of clinical manifestations and complications. Q J Med. 1993;86(1):31–42.PubMedGoogle Scholar
  56. 56.
    Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol. 1999;92(1):34–48.PubMedCrossRefGoogle Scholar
  57. 57.
    Kainulainen L, Nikoskelainen J, Ruuskanen O. Diagnostic findings in 95 finnish patients with common variable immunodeficiency. J Clin Immunol. 2001;21(2):145–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Quinti I, Soresina A, Spadaro G, Martino S, Donnanno S, Agostini C, et al. Long-term follow-up and outcome of a large cohort of patients with common variable immunodeficiency. J Clin Immunol. 2007;27(3):308–16.PubMedCrossRefGoogle Scholar
  59. 59.
    Chapel H, Lucas M, Lee M, Bjorkander J, Webster D, Grimbacher B, et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112(2):277–86.PubMedCrossRefGoogle Scholar
  60. 60.
    Chapel H, Cunningham-Rundles C. Update in understanding common variable immunodeficiency disorders (CVIDs) and the management of patients with these conditions. Br J Haematol. 2009 Mar 27.Google Scholar
  61. 61.
    Ferreira RC, Pan-Hammarstrom Q, Graham RR, Gateva V, Fontan G, Lee AT, et al. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet. 2010;42(9):777–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Medicine, The Immunology InstituteThe Mount Sinai School of MedicineNew York CityUSA

Personalised recommendations