Skip to main content

IL-17 signaling in host defense against Candida albicans

Abstract

The discovery of the Th17 lineage in 2005 triggered a major change in how immunity to infectious diseases is viewed. Fungal infections, in particular, have long been a relatively understudied area of investigation in terms of the host immune response. Candida albicans is a commensal yeast that colonizes mucosal sites and skin. In healthy individuals, it is non-pathogenic, but in conditions of immune deficiency, this organism can cause a variety of infections associated with considerable morbidity. Candida can also cause disseminated infections that have a high mortality rate and are a major clinical problem in hospital settings. Although immunity to Candida albicans was long considered to be mediated by Th1 cells, new data in both rodent models and in humans have revealed an essential role for the Th17 lineage, and in particular its signature cytokine IL-17.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

OPC:

Oropharygeal candidiasis

CMC:

Chronic mucocutaneous candidiaisis

HIES:

Hyper-IgE Syndrome

APS-1:

Autoimmune polyendocrine syndrome-1

AMP:

Antimicrobial peptide

PRR:

Pattern recognition receptor

AR:

Autosomal recessive

LOF:

Loss of function

References

  1. 1.

    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. J Immunol. 1986;136:2348–57.

    PubMed  CAS  Google Scholar 

  2. 2.

    Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunol. 2005;6:1133–41.

    Article  CAS  Google Scholar 

  3. 3.

    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4 + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 2005;6:1123–32.

    Article  CAS  Google Scholar 

  4. 4.

    Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 Family Cytokines and the Expanding Diversity of Effector T Cell Lineages. Annu Rev Immunol. 2007;25:821–52.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immuno. 2009;27:485–518.

    Article  CAS  Google Scholar 

  6. 6.

    Dong C. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol. 2006;6:329–33.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nature Med. 2007;13:139–45.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Gor DO, Rose NR, Greenspan NS. TH1-TH2: a procrustean paradigm. Nature Immunol. 2003;4:503–5.

    Article  CAS  Google Scholar 

  9. 9.

    Gaffen SL, Kramer JM, Yu JJ, Shen F. The IL-17 cytokine family. In: Litwack G, editor. Vitamins and hormones. London: Academic Press; 2006. p. 255–82.

    Google Scholar 

  10. 10.

    Hirahara K, Ghoreschi K, Laurence A, Yang XP, Kanno Y, O’Shea JJ. Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine Growth Factor Rev. 2010;21:425–34.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2009;2:403–11.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Goswami R, Kaplan MH. A brief history of IL-9. J Immunol. 2011;186:3283–8.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Shrikant PA, Rao R, Li Q, Kesterson J, Eppolito C, Mischo A, et al. Regulating functional cell fates in CD8 T cells. Immunol Res. 2010;46:12–22.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183:2593–603.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479–89.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Liu X, Lin X, Gaffen SL. Crucial role for nuclear factor of activated T cells (NFAT) in T cell receptor-mediated regulation of the human interleukin-17 gene. J Biol Chem. 2004;279:52762–71.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Dongari-Bagtoglou A, Fidel P. The host cytokine responses and protective immunity in oropharyngeal candidiasis. J Dent Res. 2005;84:966–77.

    Article  Google Scholar 

  18. 18.

    Clancy C, Cheng S, Nguyen M. Animal models of Candidiasis. In: Cihlar R, Calderone R, editors. Candida albicans: methods and protocols. New York: Humana Press; 2009. p. 65–76.

    Google Scholar 

  19. 19.

    Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis. 2004;190:624–31.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    van de Veerdonk FL, Kullberg BJ, Verschueren IC, Hendriks T, van der Meer JW, Joosten LA, et al. Differential effects of IL-17 pathway in disseminated candidiasis and zymosan-induced multiple organ failure. Shock. 2010;34:407–11.

    PubMed  Article  Google Scholar 

  21. 21.

    Farah C, Hu Y, Riminton S, Ashman R. Distinct roles for interleukin-12p40 and tumour necrosis factor in resistance to oral candidiasis defined by gene targeting. Oral Microbiol Immunol. 2006;21:252–5.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13:715–25.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Kamai Y, Kubota M, Kamai Y, Hosokawa T, Fukuoka T, Filler S. New model of oropharyngeal candidiasis in mice. Anti-microb Agents Chemo. 2001;45:3195–7.

    Article  CAS  Google Scholar 

  24. 24.

    Conti HR, Gaffen SL. Host responses to Candida albicans: Th17 cells and mucosal candidiasis. Microbes Infect. 2010;12:518–27.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Conti H, Shen F, Nayyar N, Stocum E, JN S, Lindemann M, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med. 2009;206:299–311.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Ho A, Shen F, Conti H, Patel N, Childs E, Peterson A, et al. IL-17RC is required for immune signaling via an extended SEFIR domain in the cytoplasmic tail. J Immunol. 2010;185:1063–70.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Pandiyan P, Conti H, Zheng L, Peterson A, Mathern D, Hernandez-Santos N, et al. CD4 + CD25 + Foxp3 + regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 infection model. Immunity. 2011;34:422–34.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Eyerich K, Foerster S, Rombold S, Seidl HP, Behrendt H, Hofmann H, et al. Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22. J Invest Dermatol. 2008;128:2640–5.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Aujla SJ, Dubin PJ, Kolls JK. Th17 cells and mucosal host defense. Semin Immunol. 2007;19:377–82.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Kagami S, Rizzo HL, Kurtz SE, Miller LS, Blauvelt A. IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol. 2010;185:5453–62.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Spellberg BJ, Ibrahim AS, Avanesian V, Fu Y, Myers C, Phan QT, et al. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J Infect Dis. 2006;194:256–60.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Wuthrich M, Gern B, Hung CY, Ersland K, Rocco N, Pick-Jacobs J, et al. Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. J Clin Invest. 2011;121:554–68.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Cheng SC, van de Veerdonk F, Smeekens S, Joosten LA, van der Meer JW, Kullberg BJ, et al. Candida albicans dampens host defense by downregulating IL-17 production. J Immunol. 2010;185:2450–7.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol. 2007;37:2695–706.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Zelante T, Iannitti R, De Luca A, Romani L. IL-22 in antifungal immunity. Eur J Immunol. 2011;41:270–5.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    De Luca A, Zelante T, D’Angelo C, Zagarella S, Fallarino F, Spreca A, et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol. 2010;3:361–73.

    PubMed  Article  Google Scholar 

  37. 37.

    de Repentigny L. Animal models in the analysis of Candida host-pathogen interactions. Cur Op Microbiol. 2004;7:324–9.

    Article  Google Scholar 

  38. 38.

    Fidel PL Jr, Cutler JE. Prospects for development of a vaccine to prevent and control vaginal candidiasis. Curr Infect Dis Rep. 2011;13:102–7.

    PubMed  Article  Google Scholar 

  39. 39.

    Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21:467–76.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Yu J, Gaffen SL. Interleukin-17: a novel inflammatory cytokine that bridges innate and adaptive immunity. Front Biosci. 2008;13:170–7.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203:2271–9.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Saunus JM, Kazoullis A, Farah CS. Cellular and molecular mechanisms of resistance to oral Candida albicans infections. Front Biosci. 2008;13:5345–58.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Conti H, Baker O, Freeman A, Jang W, Li R, Holland S, et al.: New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome. Mucosal Immunol. 2011 (in press).

  44. 44.

    Weindl G, Naglik JR, Kaesler S, Biedermann T, Hube B, Korting HC, et al. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J Clin Invest. 2007;117:3664–72.

    PubMed  CAS  Google Scholar 

  45. 45.

    van de Veerdonk FL, Marijnissen RJ, Kullberg BJ, Koenen HJ, Cheng SC, Joosten I, et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe. 2009;5:329–40.

    PubMed  Article  Google Scholar 

  46. 46.

    Gow NA, Netea MG, Munro CA, Ferwerda G, Bates S, Mora-Montes HM, et al. Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis. 2007;196:1565–71.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008;6:67–78.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nature Immunol. 2007;8:31–8.

    Article  CAS  Google Scholar 

  49. 49.

    Leibundgut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nature Immunol. 2007;8:630–8.

    Article  CAS  Google Scholar 

  50. 50.

    Cambi A, Netea MG, Mora-Montes HM, Gow NA, Hato SV, Lowman DW, et al. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J Biol Chem. 2008;283:20590–9.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E, Gross O, et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med. 2009;206:2037–51.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Saijo S, Fujikado N, Furuta T, Chung SH, Kotaki H, Seki K, et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nature Immunol. 2007;8:39–46.

    Article  CAS  Google Scholar 

  53. 53.

    Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A, et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity. 2010;32:681–91.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Wells CA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, et al. The Macrophage-Inducible C-Type Lectin, Mincle, Is an Essential Component of the Innate Immune Response to Candida albicans. J Immunol. 2008;180:7404–13.

    PubMed  CAS  Google Scholar 

  55. 55.

    Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. 2009;5:487–97.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Gross O, Poeck H, Bscheider M, Dostert C, Hannesschlager N, Endres S, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature. 2009;459:433–6.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Freeman AF, Holland SM. The hyper-IgE syndromes. Immunology and allergy clinics of North America. 2008;28:277–91. viii.

    PubMed  Article  Google Scholar 

  58. 58.

    Freeman AF, Kleiner DE, Nadiminti H, Davis J, Quezado M, Anderson V, et al. Causes of death in hyper-IgE syndrome. J Allergy Clin Immunol. 2007;119:1234–40.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Desai K, Huston D, Harriman G. Previously undiagnosed hyper-IgE syndrome in an adult with multiple systemic fungal infections. J Allergy Clin Immunol. 1996;98:1123–4.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–62.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452:773–6.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Ma CS, Chew GY, Simpson N, Priyadarshi A, Wong M, Grimbacher B, et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med. 2008;205:1551–7.

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Renner ED, Rylaarsdam S, Anover-Sombke S, Rack AL, Reichenbach J, Carey JC, et al. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J Allergy Clin Immunol. 2008;122:181–7.

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25:745–55.

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Woellner C, Schaffer AA, Puck JM, Renner ED, Knebel C, Holland SM, et al. The hyper IgE syndrome and mutations in TYK2. Immunity. 2007;26:535.

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Puel A, Picard C, Cypowyj S, Lilic D, Abel L, Casanova JL. Inborn errors of mucocutaneous immunity to Candida albicans in humans: a role for IL-17 cytokines? Curr Opin Immunol. 2010;22:467–74.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Puel A, Cypowji S, Bustamante J, Wright J, Liu L, Lim H, et al.: Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011 (in press).

  68. 68.

    Puel A, Doffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, Picard C, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med. 2010;207:291–7.

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M, Kisand KV, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207:299–308.

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H, et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med. 2009;361:1760–7.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Glocker EO, Hennigs A, Nabavi M, Schaffer AA, Woellner C, Salzer U, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361:1727–35.

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Plantinga TS, van der Velden WJ, Ferwerda B, van Spriel AB, Adema G, Feuth T, et al. Early stop polymorphism in human DECTIN-1 is associated with increased candida colonization in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2009;49:724–32.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Lin L, Ibrahim AS, Xu X, Farber JM, Avanesian V, Baquir B, et al. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog. 2009;5:e1000703.

    PubMed  Article  Google Scholar 

  74. 74.

    Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010;2:52ra72.

    PubMed  Google Scholar 

Download references

Acknowledgments

SLG was supported by the National Institutes of Health grants AI89768 and AR054389. NHS is supported by AR054389.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Gaffen.

Additional information

Nydiaris Hernández-Santos and Alanna C. Peterson contributed equally to this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gaffen, S.L., Hernández-Santos, N. & Peterson, A.C. IL-17 signaling in host defense against Candida albicans . Immunol Res 50, 181–187 (2011). https://doi.org/10.1007/s12026-011-8226-x

Download citation

Keywords

  • IL-17
  • Th17
  • Candida albicans
  • Fungal infections
  • Cytokine