Immunologic Research

, Volume 49, Issue 1–3, pp 56–69 | Cite as

T-lymphocyte recovery and function after cord blood transplantation



The Szabolcs laboratory is focused on understanding the biology of donor-derived cellular immunity in recipients of allogeneic hematopoietic cell transplantation that can be translated into new immunotherapy strategies. To this end, we are focused on developing novel laboratory approaches to analyze and augment immune recovery for high risk patient cohorts without increasing graft-versus-host disease. Much of our work has focused on unrelated cord blood transplantation as the dominant clinical scenario and laboratory model. Our overarching goal is to minimize transplant-related mortality and morbidity and render HLA-mismatched unrelated cord blood transplant, a widely accepted safe cellular therapy. Donor leukocyte infusions in the allogeneic hematopoietic transplant setting can provide a clinically relevant boost of immunity to reduce opportunistic infections and to increase graft-versus-leukemia activity. Our laboratory has a major focus toward ex vivo expansion of cord blood T cells with anti-apoptotic cytokines and CD3/CD28 co-stimulatory beads. Expanded lymphocytes lack alloreactivity against recipient and other allogeneic cells indicating a favorable safety profile from graft-versus-host disease. Nevertheless, expanded T cells can be primed subsequently against lymphoid and myeloid leukemia cells to generate tumor-specific cytotoxic T cells. These findings offer a major step in fulfilling critical biological requirements to quickly generate a cellular product ex vivo, using a negligible fraction of a cord blood graft that provides a flexible adoptive immunotherapy platform for both children and adults.


Cord blood Transplantation Lymphopenia Plasmacytoid dendritic cells CD4+ T lymphocytes Ex vivo expansion Donor leukocyte infusion (DLI) Graft-versus-host disease (GVHD) Graft-versus-leukemia (GVL) 


  1. 1.
    Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321(17):1174–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Kurtzberg J, Graham M, Casey J, Olson J, Stevens CE, Rubinstein P. The use of umbilical cord blood in mismatched related and unrelated hemopoietic stem cell transplantation. Blood Cells. 1994;20(2–3):275–83.PubMedGoogle Scholar
  3. 3.
    Gluckman E, Rocha V. Cord blood transplantation: state of the art. Haematologica. 2009;94(4):451–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Barker JN, Davies SM, DeFor T, Ramsay NK, Weisdorf DJ, Wagner JE. Survival after transplantation of unrelated donor umbilical cord blood is comparable to that of human leukocyte antigen-matched unrelated donor bone marrow: results of a matched-pair analysis. Blood. 2001;97(10):2957–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Rocha V, Cornish J, Sievers EL, et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood. 2001;97(10):2962–71.PubMedCrossRefGoogle Scholar
  6. 6.
    Rocha V, Gluckman E. Improving outcomes of cord blood transplantation: HLA matching, cell dose and other graft- and transplantation-related factors. Br J Haematol. 2009;147(2):262–74.PubMedCrossRefGoogle Scholar
  7. 7.
    Rubinstein P, Carrier C, Scaradavou A, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med. 1998;339(22):1565–77.PubMedCrossRefGoogle Scholar
  8. 8.
    Rocha V, Labopin M, Sanz G, et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med. 2004;351(22):2276–85.PubMedCrossRefGoogle Scholar
  9. 9.
    Rocha V, Gluckman E. Clinical use of umbilical cord blood hematopoietic stem cells. Biol Blood Marrow Transplant. 2006;12(1 Suppl 1):34–41.PubMedCrossRefGoogle Scholar
  10. 10.
    Kurtzberg J, Carter, S.L., Baxter-Lowe, L.A., Feig, S.A., Guinan, E.C., Kamani, N.R., Kapoor, N., Delaney, C., Haut, P.R., Wall, D., Kernan, N.A. Results of the cord blood transplantation study (COBLT): Clinical outcomes of 193 unrelated donor umbilical cord blood transplantation in pediatric patients with malignant conditions. [abstract] Biol Blood Marrow Transplant; 2005 February 2005; 2005. p. 2 (abst 6).Google Scholar
  11. 11.
    Klein AK, Patel DD, Gooding ME, et al. T-Cell recovery in adults and children following umbilical cord blood transplantation. Biol Blood Marrow Transplant. 2001;7(8):454–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Thomson BG, Robertson KA, Gowan D, et al. Analysis of engraftment, graft-versus-host disease, and immune recovery following unrelated donor cord blood transplantation. Blood. 2000;96(8):2703–11.PubMedGoogle Scholar
  13. 13.
    Moretta A, Maccario R, Fagioli F, et al. Analysis of immune reconstitution in children undergoing cord blood transplantation. Exp Hematol. 2001;29(3):371–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Broxmeyer HE. American Association of Blood Banks. Cord blood : biology, immunology, and clinical transplantation. Bethesda, Md.: AABB Press; 2004.Google Scholar
  15. 15.
    Koh LP, Chao NJ. Umbilical cord blood transplantation in adults using myeloablative and nonmyeloablative preparative regimens. Biol Blood Marrow Transplant. 2004;10(1):1–22.PubMedCrossRefGoogle Scholar
  16. 16.
    Komanduri KV, St John LS, de Lima M, et al. Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood. 2007;110(13):4543–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Brahmi Z, Hommel-Berrey G, Smith F, Thomson B. NK cells recover early and mediate cytotoxicity via perforin/granzyme and Fas/FasL pathways in umbilical cord blood recipients. Hum Immunol. 2001;62(8):782–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Niehues T, Rocha V, Filipovich AH, et al. Factors affecting lymphocyte subset reconstitution after either related or unrelated cord blood transplantation in children–a Eurocord analysis. Br J Haematol. 2001;114(1):42–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Cohen G, Carter SL, Weinberg KI, et al. Antigen-specific T-lymphocyte function after cord blood transplantation. Biol Blood Marrow Transplant. 2006;12(12):1335–42.PubMedCrossRefGoogle Scholar
  20. 20.
    Parkman R, Cohen G, Carter SL, et al. Successful immune reconstitution decreases leukemic relapse and improves survival in recipients of unrelated cord blood transplantation. Biol Blood Marrow Transplant. 2006;12(9):919–27.PubMedCrossRefGoogle Scholar
  21. 21.
    Han P, Hodge G, Story C, Xu X. Phenotypic analysis of functional T-lymphocyte subtypes and natural killer cells in human cord blood: relevance to umbilical cord blood transplantation. Br J Haematol. 1995;89(4):733–40.PubMedCrossRefGoogle Scholar
  22. 22.
    D’Arena G, Musto P, Cascavilla N, et al. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica. 1998;83(3):197–203.PubMedGoogle Scholar
  23. 23.
    Szabolcs P, Park KD, Reese M, Marti L, Broadwater G, Kurtzberg J. Coexistent naive phenotype and higher cycling rate of cord blood T cells as compared to adult peripheral blood. Exp Hematol. 2003;31(8):708–14.PubMedCrossRefGoogle Scholar
  24. 24.
    Chalmers IM, Janossy G, Contreras M, Navarrete C. Intracellular cytokine profile of cord and adult blood lymphocytes. Blood. 1998;92(1):11–8.PubMedGoogle Scholar
  25. 25.
    Risdon G, Gaddy J, Stehman FB, Broxmeyer HE. Proliferative and cytotoxic responses of human cord blood T lymphocytes following allogeneic stimulation. Cell Immunol. 1994;154(1):14–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Mommaas B, Stegehuis-Kamp JA, van Halteren AG, et al. Cord blood comprises antigen-experienced T cells specific for maternal minor histocompatibility antigen HA-1. Blood. 2005;105(4):1823–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Suen Y, Lee SM, Qian J, van de Ven C, Cairo MS. Dysregulation of lymphokine production in the neonate and its impact on neonatal cell mediated immunity. Vaccine. 1998;16(14–15):1369–77.PubMedCrossRefGoogle Scholar
  28. 28.
    Bradley MB, Cairo MS. Cord blood immunology and stem cell transplantation. Hum Immunol. 2005;66(5):431–46.PubMedCrossRefGoogle Scholar
  29. 29.
    Berthou C, Legros-Maida S, Soulie A, et al. Cord blood T lymphocytes lack constitutive perforin expression in contrast to adult peripheral blood T lymphocytes. Blood. 1995;85(6):1540–6.PubMedGoogle Scholar
  30. 30.
    Takahata Y, Nomura A, Takada H, et al. CD25+CD4+ T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp Hematol. 2004;32(7):622–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Godfrey WR, Spoden DJ, Ge YG, et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood. 2005;105(2):750–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Schonland SO, Zimmer JK, Lopez-Benitez CM, et al. Homeostatic control of T-cell generation in neonates. Blood. 2003;102(4):1428–34.PubMedCrossRefGoogle Scholar
  33. 33.
    Gardiner CM, Meara AO, Reen DJ. Differential cytotoxicity of cord blood and bone marrow-derived natural killer cells. Blood. 1998;91(1):207–13.PubMedGoogle Scholar
  34. 34.
    Harris DT, Schumacher MJ, Locascio J, et al. Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proc Natl Acad Sci U S A. 1992;89(21):10006–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Roth I, Corry DB, Locksley RM, Abrams JS, Litton MJ, Fisher SJ. Human placental cytotrophoblasts produce the immunosuppressive cytokine interleukin 10. J Exp Med. 1996;184(2):539–48.PubMedCrossRefGoogle Scholar
  36. 36.
    Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281(5380):1191–3.PubMedCrossRefGoogle Scholar
  37. 37.
    Szekeres-Bartho J, Faust Z, Varga P, Szereday L, Kelemen K. The immunological pregnancy protective effect of progesterone is manifested via controlling cytokine production. Am J Reprod Immunol. 1996;35(4):348–51.PubMedGoogle Scholar
  38. 38.
    Marchant A, Goldman M. T cell-mediated immune responses in human newborns: ready to learn? Clin Exp Immunol. 2005;141(1):10–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Guller S, LaChapelle L. The role of placental Fas ligand in maintaining immune privilege at maternal-fetal interfaces. Semin Reprod Endocrinol. 1999;17(1):39–44.PubMedCrossRefGoogle Scholar
  40. 40.
    Ribeiro-do-Couto LM, Boeije LC, Kroon JS, et al. High IL-13 production by human neonatal T cells: neonate immune system regulator? Eur J Immunol. 2001;31(11):3394–402.PubMedCrossRefGoogle Scholar
  41. 41.
    White GP, Watt PM, Holt BJ, Holt PG. Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO- T cells. J Immunol. 2002;168(6):2820–7.PubMedGoogle Scholar
  42. 42.
    Goriely S, Van Lint C, Dadkhah R, et al. A defect in nucleosome remodeling prevents IL-12(p35) gene transcription in neonatal dendritic cells. J Exp Med. 2004;199(7):1011–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Goriely S, Vincart B, Stordeur P, et al. Deficient IL-12(p35) gene expression by dendritic cells derived from neonatal monocytes. J Immunol. 2001;166(3):2141–6.PubMedGoogle Scholar
  44. 44.
    Langrish CL, Buddle JC, Thrasher AJ, Goldblatt D. Neonatal dendritic cells are intrinsically biased against Th-1 immune responses. Clin Exp Immunol. 2002;128(1):118–23.PubMedCrossRefGoogle Scholar
  45. 45.
    Tu W, Chen S, Sharp M, et al. Persistent and selective deficiency of CD4+ T cell immunity to cytomegalovirus in immunocompetent young children. J Immunol. 2004;172(5):3260–7.PubMedGoogle Scholar
  46. 46.
    Szabolcs PP, B.L., Niedzwiecki, D., Chao, N., Kurtzberg, J. Multivariate Analysis of Patient and Graft Specific Factors among 330 Recipients of Unrelated Cord Blood Transplant (UCBT) To Predict Risk of Death from Opportunistic Infections in the First 6 Months after UCBT. [abstract] Blood 2006;108; No11;2860a.Google Scholar
  47. 47.
    Szabolcs P, Niedzwiecki D. Immune reconstitution after unrelated cord blood transplantation. Cytotherapy. 2007;9(2):111–22.PubMedCrossRefGoogle Scholar
  48. 48.
    Szabolcs P, Park KD, Reese M, Marti L, Broadwater G, Kurtzberg J. Absolute values of dendritic cell subsets in bone marrow, cord blood, and peripheral blood enumerated by a novel method. Stem Cells. 2003;21(3):296–303.PubMedCrossRefGoogle Scholar
  49. 49.
    Szabolcs P, Park KD, Marti L, et al. Superior depletion of alloreactive T cells from peripheral blood stem cell and umbilical cord blood grafts by the combined use of trimetrexate and interleukin-2 immunotoxin. Biol Blood Marrow Transplant. 2004;10(11):772–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Szabolcs P,. Park, K. D., Marti, L., Reese, M., Lee, M., DeOliveira, Sanders, L., Niedzwiecki D., Kurtzberg, J.. The impact of immune reconstitution in the early post grafting period on the development of opportunistic infections after unrelated cord blood transplantation: a multivariate analysis of host, graft, and day +50 immune profile. [abstract], Biology of Blood and Marrow Transplantation 2004;10(2):24; 48a.Google Scholar
  51. 51.
    Hamann D, Baars PA, Rep MH, et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med. 1997;186(9):1407–18.PubMedCrossRefGoogle Scholar
  52. 52.
    Mazur MA, Davis CC, Szabolcs P. Ex vivo expansion and Th1/Tc1 maturation of umbilical cord blood T cells by CD3/CD28 costimulation. Biol Blood Marrow Transplant. 2008;14(10):1190–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Parmar S, Robinson SN, Komanduri K, et al. Ex vivo expanded umbilical cord blood T cells maintain naive phenotype and TCR diversity. Cytotherapy. 2006;8(2):149–57.PubMedCrossRefGoogle Scholar
  54. 54.
    June CH, Ledbetter JA, Linsley PS, Thompson CB. Role of the CD28 receptor in T-cell activation. Immunol Today. 1990;11(6):211–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Levine BL, Bernstein WB, Aronson NE, et al. Adoptive transfer of costimulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat Med. 2002;8(1):47–53.PubMedCrossRefGoogle Scholar
  56. 56.
    Laport GG, Levine BL, Stadtmauer EA, et al. Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin lymphoma following CD34+-selected hematopoietic cell transplantation. Blood. 2003;102(6):2004–13.PubMedCrossRefGoogle Scholar
  57. 57.
    Porter DL, Levine BL, Bunin N, et al. A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation. Blood. 2006;107(4):1325–31.PubMedCrossRefGoogle Scholar
  58. 58.
    Hagihara M, Chargui J, Gansuvd B, et al. Umbilical cord blood T lymphocytes are induced to apoptosis after being allo-primed in vitro. Bone Marrow Transplant. 1999;24(11):1229–33.PubMedCrossRefGoogle Scholar
  59. 59.
    Davis CC ML, Sempowski G, Jeyaraj DA, Szabolcs P. IL-7 Permits Th1/Tc1 Maturation And Promotes Ex Vivo Expansion of Cord Blood T Cells: A Critical Step Toward Adoptive Immunotherapy After Cord Blood Transplantation. Cancer Res 2010:In Press.Google Scholar
  60. 60.
    Snyder KM, Mackall CL, Fry TJ. IL-7 in allogeneic transplant: clinical promise and potential pitfalls. Leuk Lymphoma. 2006;47(7):1222–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Surh CD, Boyman O, Purton JF, Sprent J. Homeostasis of memory T cells. Immunol Rev. 2006;211:154–63.PubMedCrossRefGoogle Scholar
  62. 62.
    Bolotin E, Annett G, Parkman R, Weinberg K. Serum levels of IL-7 in bone marrow transplant recipients: relationship to clinical characteristics and lymphocyte count. Bone Marrow Transplant. 1999;23(8):783–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Chung B, Dudl E, Toyama A, Barsky L, Weinberg KI. Importance of interleukin-7 in the development of experimental graft-versus-host disease. Biol Blood Marrow Transplant. 2008;14(1):16–27.PubMedCrossRefGoogle Scholar
  64. 64.
    Stonehouse TJ, Woodhead VE, Herridge PS, et al. Molecular characterization of U937-dependent T-cell co-stimulation. Immunology. 1999;96(1):35–47.PubMedCrossRefGoogle Scholar
  65. 65.
    Park KD, Marti L, Kurtzberg J, Szabolcs P. In vitro priming and expansion of cytomegalovirus-specific Th1 and Tc1 T cells from naive cord blood lymphocytes. Blood. 2006;108(5):1770–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Pediatrics, Pediatric Blood and Marrow Transplant ProgramDuke University Medical CenterDurhamUSA
  2. 2.Department of ImmunologyDuke University Medical CenterDurhamUSA

Personalised recommendations