Skip to main content
Log in

Class I MHC molecules as probes of membrane patchiness: from biophysical measurements to modulation of immune responses

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Here I summarize decades of work using the biophysics of class I MHC molecules to probe the patchiness and heterogeneity of cell surfaces. This program began as a study of membranes generally. MHC molecules were a convenient probe. However, in recent years, it has become clear that the lateral distribution, clustering, of class I MHC molecules in the membrane affects their recognition by effector CTL. This offers the possibility of enhancing or reducing T-cell recognition of targets by altering the clustering of their membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Watkins JF, Grace DM. Studies on the surface antigens of interspecific mammalian cell heterokaryons. J Cell Sci. 1967;2:193–204.

    CAS  PubMed  Google Scholar 

  2. Frye LD, Edidin M. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci. 1970;7:319–35.

    CAS  PubMed  Google Scholar 

  3. Jacobson K, Wu E, Poste G. Measurement of the translational mobility of concanavalin A in glycerol-saline solutions and on the cell surface by fluorescence recovery after photobleaching. Biochim Biophys Acta. 1976;433:215–22.

    Article  CAS  PubMed  Google Scholar 

  4. Schlessinger J, Koppel DE, Axelrod D, Jacobson K, Webb WW, Elson EL. Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc Natl Acad Sci USA. 1976;73:2409–13.

    Article  CAS  PubMed  Google Scholar 

  5. Zagyansky Y, Edidin M. Lateral diffusion of concanavalin A receptors in the plasma membrane of mouse fibroblasts. Biochim Biophys Acta. 1976;433:209–14.

    Article  CAS  PubMed  Google Scholar 

  6. Edidin M, Zagyansky Y, Lardner TJ. Measurement of membrane protein lateraldiffusion in single cells. Science. 1976;191:466–8.

    Article  CAS  PubMed  Google Scholar 

  7. Wier M, Edidin M. Constraint of the translational diffusion of a membrane glycoprotein by its external domains. Science. 1988;242:412–4.

    Article  CAS  PubMed  Google Scholar 

  8. Yechiel E, Edidin M. Micrometer-scale domains in fibroblast plasma membranes. J Cell Biol. 1987;105:755–60.

    Article  CAS  PubMed  Google Scholar 

  9. Edidin M, Stroynowski I. Differences between the lateral organization of conventional and inositol phospholipid-anchored membrane proteins. A further definition of micrometer scale membrane domains. J Cell Biol. 1991;112:1143–50.

    Article  CAS  PubMed  Google Scholar 

  10. Edidin M, Zuniga M. Lateral diffusion of wild-type and mutant Ld antigens in L cells. J Cell Biol. 1984;99:2333–5.

    Article  CAS  PubMed  Google Scholar 

  11. Schnapp BJ, Gelles J, Sheetz MP. Nanometer-scale measurements using video light microscopy. Cell Motil Cytoskeleton. 1988;10:47–53.

    Article  CAS  PubMed  Google Scholar 

  12. Saxton MJ, Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–99.

    Article  CAS  PubMed  Google Scholar 

  13. Edidin M, Zuñiga MC, Sheetz MP. Truncation mutants define and locate cytoplasmic barriers to lateral mobility of membrane glycoproteins. Proc Natl Acad Sci USA. 1994;91:3378–82.

    Article  CAS  PubMed  Google Scholar 

  14. Capps GG, Pine S, Edidin M, Zuñiga MC. Short class I major histocompatibility complex cytoplasmic tails differing in charge detect arbiters of lateral diffusion in the plasma membrane. Biophys J. 2004;86:2896–909.

    Article  CAS  PubMed  Google Scholar 

  15. Engelman DM. Membranes are more mosaic than fluid. Nature. 2005;438:578–80.

    Article  CAS  PubMed  Google Scholar 

  16. Matko J, Bushkin Y, Wei T, Edidin M. Clustering of class I HLA molecules on the surfaces of activated and transformed human cells. J Immunol. 1994;152:3353–60.

    CAS  PubMed  Google Scholar 

  17. Chakrabarti A, Matko J, Rahman NA, Barisas BG, Edidin M. Self-association of class I major histocompatibility complex molecules in liposome and cell surface membranes. Biochemistry. 1992;31:7182–9.

    Article  CAS  PubMed  Google Scholar 

  18. Edidin M. Near-field scanning optical microscopy, a siren call to biology. Traffic. 2001;2:797–803.

    Article  CAS  PubMed  Google Scholar 

  19. Hwang J, Gheber LA, Margolis L, Edidin M. Domains in cell plasma membranes investigated by near-field scanning optical microscopy. Biophys J. 1998;74:2184–90.

    Article  CAS  PubMed  Google Scholar 

  20. Tang Q, Edidin M. Vesicle trafficking and cell surface membrane patchiness. Biophys J. 2001;81:196–203.

    Article  CAS  PubMed  Google Scholar 

  21. Gheber LA, Edidin M. A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic. Biophys J. 1999;77:3163–75.

    Article  CAS  PubMed  Google Scholar 

  22. Lavi Y, Edidin MA, Gheber LA. Dynamic patches of membrane proteins. Biophys J. 2007;93:L35–7.

    Article  CAS  PubMed  Google Scholar 

  23. McKeithan TW. Kinetic proofreading in T-cell receptor signal transduction. Proc Natl Acad Sci USA. 1995;92:5042–6.

    Article  CAS  PubMed  Google Scholar 

  24. San José E, Borroto A, Niedergang F, Alcover A, Alarcón B. Triggering the TCR complex causes the downregulation of nonengaged receptors by a signal transduction-dependent mechanism. Immunity. 2000;12:161–70.

    Article  PubMed  Google Scholar 

  25. Bachmann MF, Ohashi PS. The role of T-cell receptor dimerization in T-cell activation. Immunol Today. 1999;20:568–76.

    Article  CAS  PubMed  Google Scholar 

  26. Bodnár A, Bacsó Z, Jenei A, Jovin TM, Edidin M, Damjanovich S, et al. Class I HLA oligomerization at the surface of B cells is controlled by exogenous beta(2)-microglobulin: implications in activation of cytotoxic T lymphocytes. Int Immunol. 2003;15:331–9.

    Article  PubMed  Google Scholar 

  27. Edidin M. The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct. 2003;32:257–83.

    Article  CAS  PubMed  Google Scholar 

  28. Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz MP, Edidin M. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4, 5-bisphosphate-dependent organization of cell actin. Proc Natl Acad Sci USA. 2003;100:13964–9.

    Article  CAS  PubMed  Google Scholar 

  29. Fooksman DR, Grönvall GK, Tang Q, Edidin M. Clustering class I MHC modulates sensitivity of T cell recognition. J Immunol. 2006;176:6673–80.

    CAS  PubMed  Google Scholar 

  30. Neumann F, Sturm C, Hulsmeyer M, Dauth N, Guillaume P, Luescher IF, et al. Fab antibodies capable of blocking T cells by competitive binding have the identical specificity but a higher affinity to the MHC-peptide-complex than the T cell receptor. Immunol Lett. 2009;125:86–92.

    Article  CAS  PubMed  Google Scholar 

  31. Hosseini BH, Louban I, Djandji D, Wabnitz GH, Deeg J, Bulbuc N, et al. Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. Proc Natl Acad Sci USA. 2009;106:17852–7.

    Article  CAS  PubMed  Google Scholar 

  32. Shen K, Thomas VK, Dustin ML, Kam LC. Micropatterning of costimulatory ligands enhances CD4+T cell function. Proc Natl Acad Sci USA. 2008;105:7791–6.

    Article  CAS  PubMed  Google Scholar 

  33. Lippincott-Schwartz J, Snapp E, Kenworthy A. Studying protein dynamics in living cells. Nat Rev Mol Cell Biol. 2001;2:444–56.

    Article  CAS  PubMed  Google Scholar 

  34. Kwik, JF. Immobilization of MHC class I molecules enhances allogeneic target cell lysis by CD8+T cells. Ph.D. Thesis, Johns Hopkins University; 2000.

  35. Fooksman, DR. The surface organization of MHC class I molecules regulates their recognition by T-cells. Ph.D. Thesis, Johns Hopkins University; 2007.

Download references

Acknowledgments

This work was supported by NIH grant AI14584 to ME. My work in fluorescence microscopy was stimulated by the late Albert Coons, inventor of immunofluorescence and by a close colleague and friend, the late John Cebra. I am grateful to have been associated with them. I am also grateful to the many students and postdoctoral fellows who were involved in these experiments and to my longtime collaborators Martha Zuñiga and Michael Sheetz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Edidin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edidin, M. Class I MHC molecules as probes of membrane patchiness: from biophysical measurements to modulation of immune responses. Immunol Res 47, 265–272 (2010). https://doi.org/10.1007/s12026-009-8159-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-009-8159-9

Keywords

Navigation