Skip to main content

Advertisement

Log in

Overview of a HLA-Ig based “Lego-like system” for T cell monitoring, modulation and expansion

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Recent advances in molecular medicine have shown that soluble MHC-multimers can be valuable tools for both analysis and modulation of antigen-specific immune responses in vitro and in vivo. In this review, we describe the use of dimeric human and mouse major histocompatibility complexes, MHC-Ig, as part of an artificial Antigen-Presenting Cell (aAPC). MHC-Ig-based aAPC and its derivatives represent an exciting new platform technology for measuring and manipulating immune responses in vitro as well as in vivo. This new technology has the potential to help overcome many of the obstacles associated with limitations in current antigen-specific approaches of immunotherapy for the treatment of cancer, infectious diseases and autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Corr M, et al. T cell receptor-MHC class I peptide interactions: affinity, kinetics, and specificity. Science. 1994;265:946–9.

    Article  CAS  PubMed  Google Scholar 

  2. Boniface JJ, et al. Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands [corrected]. Immunity. 1998;9:459–66.

    Article  CAS  PubMed  Google Scholar 

  3. Greten TF, et al. Direct visualization of antigen-specific T cells: HTLV-1 Tax11–19- specific CD8(+) T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc Natl Acad Sci USA. 1998;95:7568–73.

    Article  CAS  PubMed  Google Scholar 

  4. Altman JD, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996;274:94–6.

    Article  CAS  PubMed  Google Scholar 

  5. Howard MC, Spack EG, Choudhury K, Greten TF, Schneck JP. MHC-based diagnostics and therapeutics—clinical applications for disease-linked genes. Immunol Today. 1999;20:161–5.

    Article  CAS  PubMed  Google Scholar 

  6. Greten TF, Schneck JP. Development and use of multimeric major histocompatibility complex molecules. Clin Diagn Lab Immunol. 2002;9:216–20.

    CAS  PubMed  Google Scholar 

  7. Bercovici N, Duffour MT, Agrawal S, Salcedo M, Abastado JP. New methods for assessing T-cell responses. Clin Diagn Lab Immunol. 2000;7:859–64.

    CAS  PubMed  Google Scholar 

  8. Whiteside TL. Monitoring of antigen-specific cytolytic T lymphocytes in cancer patients receiving immunotherapy. Clin Diagn Lab Immunol. 2000;7:327–32.

    CAS  PubMed  Google Scholar 

  9. Oelke M, et al. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med. 2003;9:619–25.

    Article  CAS  PubMed  Google Scholar 

  10. Oelke M, Krueger C, Giuntoli RL, Schneck JP. Artificial antigen-presenting cells: artificial solutions for real diseases. Trends Mol Med. 2005;11:412–20.

    Article  CAS  PubMed  Google Scholar 

  11. Oelke M, Krueger C, Schneck JP. Technological advances in adoptive immunotherapy. Drugs Today (Barc). 2005;41:13–21.

    Article  CAS  Google Scholar 

  12. Walter EA, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333:1038–44.

    Article  CAS  PubMed  Google Scholar 

  13. Heslop HE, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med. 1996;2:551–5.

    Article  CAS  PubMed  Google Scholar 

  14. Aebersold P, et al. Lysis of autologous melanoma cells by tumor-infiltrating lymphocytes: association with clinical response. J Natl Cancer Inst. 1991;83:932–7.

    Article  CAS  PubMed  Google Scholar 

  15. Berthier-Vergnes O, et al. Human melanoma cells inhibit the earliest differentiation steps of human Langerhans cell precursors but failed to affect the functional maturation of epidermal Langerhans cells. Br J Cancer. 2001;85:1944–51.

    Article  CAS  PubMed  Google Scholar 

  16. Enk AH, Jonuleit H, Saloga J, Knop J. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer. 1997;73:309–16.

    Article  CAS  PubMed  Google Scholar 

  17. Valmori D, et al. Optimal activation of tumor-reactive T cells by selected antigenic peptide analogues. Int Immunol. 1999;11:1971–80.

    Article  CAS  PubMed  Google Scholar 

  18. Costa GL, et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol. 2001;167:2379–87.

    CAS  PubMed  Google Scholar 

  19. Meidenbauer N, et al. Survival and tumor localization of adoptively transferred melan-a-specific T cells in melanoma patients. J Immunol. 2003;170:2161–9.

    CAS  PubMed  Google Scholar 

  20. Brentjens RJ, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med. 2003;9:279–86.

    Article  CAS  PubMed  Google Scholar 

  21. Dudley ME, et al. Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother. 2001;24:363–73.

    Article  CAS  PubMed  Google Scholar 

  22. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10:909–15.

    Article  CAS  PubMed  Google Scholar 

  23. Mocellin S, Mandruzzato S, Bronte V, Lise M, Nitti D. Part I: vaccines for solid tumours. Lancet Oncol. 2004;5:681–9.

    Article  CAS  PubMed  Google Scholar 

  24. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004;4:941–52.

    Article  CAS  PubMed  Google Scholar 

  25. Sotomayor EM, et al. Cross-presentation of tumor antigens by bone marrow-derived antigen-presenting cells is the dominant mechanism in the induction of T-cell tolerance during B-cell lymphoma progression. Blood. 2001;98:1070–7.

    Article  CAS  PubMed  Google Scholar 

  26. Lyman MA, et al. The fate of low affinity tumor-specific CD8+T cells in tumor-bearing mice. J Immunol. 2005;174:2563–72.

    CAS  PubMed  Google Scholar 

  27. Woo EY, et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol. 2002;168:4272–6.

    CAS  PubMed  Google Scholar 

  28. Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007;117:1155–66.

    Article  CAS  PubMed  Google Scholar 

  29. Ugel S, et al. In vivo administration of artificial antigen-presenting cells activates low-avidity T cells for treatment of cancer. Cancer Res. 2009;69:9376–84.

    Article  CAS  PubMed  Google Scholar 

  30. Ndhlovu ZM, et al. Development of an artificial-antigen-presenting-cell-based assay for the detection of low-frequency virus-specific CD8(+) T cells in whole blood, with application for measles virus. Clin Vaccine Immunol. 2009;16:1066–73.

    Article  CAS  PubMed  Google Scholar 

  31. Whiteside TL, et al. Enzyme-linked immunospot, cytokine flow cytometry, and tetramers in the detection of T-cell responses to a dendritic cell-based multipeptide vaccine in patients with melanoma. Clin Cancer Res. 2003;9:641–9.

    CAS  PubMed  Google Scholar 

  32. Clay TM, Hobeika AC, Mosca PJ, Lyerly HK, Morse MA. Assays for monitoring cellular immune responses to active immunotherapy of cancer. Clin Cancer Res. 2001;7:1127–35.

    CAS  PubMed  Google Scholar 

  33. Maecker HT, et al. Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. J Immunol Methods. 2001;255:27–40.

    Article  CAS  PubMed  Google Scholar 

  34. Schutz C, et al. Killer-artificial-antigen-presenting-cells (KaAPC): a novel strategy to delete specific T cells. Blood. 2008;111(7):3546–52.

    Article  PubMed  Google Scholar 

  35. Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest. 2004;114:1379–88.

    CAS  PubMed  Google Scholar 

  36. Chang DH, et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med. 2005;201:1503–17.

    Article  CAS  PubMed  Google Scholar 

  37. Ishikawa A, et al. A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res. 2005;11:1910–7.

    Article  CAS  PubMed  Google Scholar 

  38. Osada T, Morse MA, Lyerly HK, Clay TM. Ex vivo expanded human CD4+ regulatory NKT cells suppress expansion of tumor antigen-specific CTLs. Int Immunol. 2005;17:1143–55.

    Article  CAS  PubMed  Google Scholar 

  39. Kawano T, et al. Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells. Cancer Res. 1999;59:5102–5.

    CAS  PubMed  Google Scholar 

  40. Tahir SM, et al. Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J Immunol. 2001;167:4046–50.

    CAS  PubMed  Google Scholar 

  41. Fujii S, et al. Severe and selective deficiency of interferon-gamma-producing invariant natural killer T cells in patients with myelodysplastic syndromes. Br J Haematol. 2003;122:617–22.

    Article  PubMed  Google Scholar 

  42. Singh AK, et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med. 2001;194:1801–11.

    Article  CAS  PubMed  Google Scholar 

  43. Hammond KJ, et al. CD1d-restricted NKT cells: an interstrain comparison. J Immunol. 2001;167:1164–73.

    CAS  PubMed  Google Scholar 

  44. Gombert JM, et al. Early quantitative and functional deficiency of NK1+ -like thymocytes in the NOD mouse. Eur J Immunol. 1996;26:2989–98.

    Article  CAS  PubMed  Google Scholar 

  45. Webb TJ, Bieler JG, Schneck JP, Oelke M. Ex vivo induction and expansion of natural killer T cells by CD1d1-Ig coated artificial antigen presenting cells. J Immunol Methods. 2009;346:38–44.

    Article  CAS  PubMed  Google Scholar 

  46. Latouche JB, Sadelain M. Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nat Biotechnol. 2000;18:405–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Schneck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oelke, M., Schneck, J.P. Overview of a HLA-Ig based “Lego-like system” for T cell monitoring, modulation and expansion. Immunol Res 47, 248–256 (2010). https://doi.org/10.1007/s12026-009-8156-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-009-8156-z

Keywords

Navigation