Skip to main content
Log in

Reconstitution of self-tolerance after hematopoietic stem cell transplantation

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Graft-versus-host disease (GVHD) is a major complication of allogeneic bone marrow or hematopoietic stem cell transplantation. GVHD is thought to be primarily due to the response of mature T cells transferred along with the bone marrow graft to foreign histocompatibility antigens expressed on host tissues. Recent studies, however, have challenged this paradigm set forth in the 1960s and have suggested that self-MHC class II antigens can be recognized in GVHD. Many questions still remain unanswered particularly in regard to the role of immune reconstitution, the ability to recognize and discriminate self and the re-establishment of self-tolerance. In fact, the failure to re-establish tolerance to self can lead to systemic autoimmunity that may exacerbate or even mimic GVHD. The present review summarizes our studies in autologous GVHD characterizing the underlying immune mechanisms and their potential impact in allogeneic hematopoietic stem cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kersey JH, Weisdorf D, Nesbit ME, LeBien TW, Woods WG, McGlave PB, et al. Comparison of autologous and allogeneic bone marrow transplantation for treatment of high-risk refractory acute lymphoblastic leukemia. N Engl J Med. 1987;317:461–7.

    PubMed  CAS  Google Scholar 

  2. Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A, Buckner CD, et al. Anti-leukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med. 1979;300:1068–73.

    PubMed  CAS  Google Scholar 

  3. Jones RJ, Ambinder RF, Piantadosi S, Santos GW. Evidence of a graft-versus-lymphoma effect associated with allogeneic bone marrow transplantation. Blood. 1991;77:649–53.

    PubMed  CAS  Google Scholar 

  4. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb H-J, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–62.

    PubMed  CAS  Google Scholar 

  5. Petersdorf EW. Hematopoietic cell transplantation from unrelated donors. In: Blume KG, Forman SJ, Appelbaum FR, editors. Thomas’ hematopoietic cell transplantation. Malden: Blackwell; 2004. p. 1132–49.

    Google Scholar 

  6. Shlomchik WD, Coizens MS, Tang CB, et al. Prevention of graft-versus-host disease by inactivation of host antigen-presenting cells. Science. 1999;285:412–5.

    Article  PubMed  CAS  Google Scholar 

  7. Matte CC, Liu J, Anderson BE, et al. Donor APC’s are required for maximal GVHD but not for GVL. Nat Med. 2004;10:987–92.

    Article  PubMed  CAS  Google Scholar 

  8. Reddy PP. Pathophysiology of acute graft-versus-host disease. Hematol Oncol. 2003;21:149–61.

    Article  PubMed  Google Scholar 

  9. Ferrara LM, Antin J. The pathophysiology of graft-versus-host disease. In: Blume KG, Forman SJ, Appelbaum FR, editors. Thomas’ hematopoietic cell transplantation. Malden: Blackwell; 2004. p. 353–68.

    Google Scholar 

  10. Billingham RE. The biology of graft-versus-host reactions. Harvey Lect. 1966-67;62:21–35.

    Google Scholar 

  11. Gluckman J, Devergie A, Sohier J, Sauret JH. Graft-versus-host reactions in recipients of syngeneic bone marrow. Lancet. 1980;1:253–6.

    PubMed  CAS  Google Scholar 

  12. Rappeport J, Reinherz E, Mihm M, et al. Acute graft-versus-host reactions in recipients of bone marrow transplantation from identical twin donors. Lancet. 1979;2:717–20.

    Article  PubMed  CAS  Google Scholar 

  13. Hood AF, Vogelsang GB, Black LP, et al. Acute graft-versus-host disease: development following autologous and syngeneic bone marrow transplantation. Arch Derm. 1987;123:745–51.

    Article  PubMed  CAS  Google Scholar 

  14. Thien SW, Goldman JM, Galton DG. Acute “graft-versus-host disease” after autografting for chronic granulocytic leukemia in transplantation. Ann Intern Med. 1981;94:210–6.

    Google Scholar 

  15. Hess AD, Thoburn CJ. Immunobiology and immunotherapeutic implications of syngeneic/autologous graft-vs-host disease. Immunol Rev. 1997;157:111–23.

    Article  PubMed  CAS  Google Scholar 

  16. Hollander GA, Widmer B, Burakoff SJ. Loss of normal thymic repertoire selection and persistence of autoreactive T cells in graft-versus-host disease. J Immunol. 1994;152:1609–17.

    PubMed  CAS  Google Scholar 

  17. Tivol E, Komorowkski R, Drobyski WR. Emergent autoimmunity in graft-versus-host disease. Blood. 2005;105:4885–91.

    Article  PubMed  CAS  Google Scholar 

  18. Teshima T, Reddy P, Liu C, Williams D, Cooke KR, Ferrara JL. Impaired negative selection causes autoimmune graft-versus-host disease. Blood. 2003;102:429–35.

    Article  PubMed  CAS  Google Scholar 

  19. Parkman R. Is chronic graft-versus-host disease an autoimmune disease? Curr Opin Immunol. 1993;5:800–3.

    Article  PubMed  CAS  Google Scholar 

  20. Yamamoto M, Sugihara K, Ohtsuki F, et al. Generation of self HLA-DR specific CD3+ CD4-CD8+ cytotoxic T cells in chronic graft-versus-host disease. Bone Marrow Transpl. 1994;14:525–33.

    CAS  Google Scholar 

  21. Jenkins MK, Schwartz RH, Pardoll DM. Effects of CsA on T cell development and clonal deletion. Science. 1988;241:1655–9.

    Article  PubMed  CAS  Google Scholar 

  22. Glazier A, Tutschka PJ, Farmer ER, Santos GW. GVHD in CsA treated rats after syngeneic and autologous bone marrow reconstitution. J Exp Med. 1983;158:1–12.

    Article  PubMed  CAS  Google Scholar 

  23. Fischer AC, Beschorner WE, Hess AD. Requirements for the induction and adoptive transfer of syngeneic GVHD. J Exp Med. 1989;169:1031–8.

    Article  PubMed  CAS  Google Scholar 

  24. Jones RJ, Hess AD, Mann RB, et al. Induction of graft-versus-host disease after autologous bone marrow transplantation. Lancet. 1989;1:754–7.

    Article  PubMed  CAS  Google Scholar 

  25. Sorokin R, Kimura H, Schroeder K, Wilson DB. Cyclosporine-induced autoimmunity: conditions for expressing disease, requirement for an intact thymus, and potency estimates of autoimmune lymphocytes in drug-treated rats. J Exp Med. 1986;164:1615–26.

    Article  PubMed  CAS  Google Scholar 

  26. Hess AD, Thoburn CJ, Horwitz L. Promiscuous recognition of major histocompatibility complex class II determinants in Cyclosporine-induced syngeneic graft-vs-host disease. Transplantation. 1998;65:785–92.

    Article  PubMed  CAS  Google Scholar 

  27. Chen W, Thoburn C, Hess AD. Characterization of the pathogenic autoreactive T cells in Cyclosporine-induced syngeneic graft-vs-host disease. J Immunol. 1998;161:7040–6.

    PubMed  CAS  Google Scholar 

  28. Hess AD, Thoburn CJ, Chen W, Bright EC. Unexpected T-cell diversity in syngeneic graft-versus-host disease revealed by interaction with peptide-loaded soluble MHC class II molecules. Transplantation. 2003;75:1361–7.

    Article  PubMed  CAS  Google Scholar 

  29. Hess AD, Bright EC, Thoburn C, et al. Specificity of effector T lymphocytes in autologous graft-vs-host disease: role of the major histocompatibility complex class II invariant chain peptide. Blood. 1997;89:2203–9.

    PubMed  CAS  Google Scholar 

  30. Thoburn CJ, Miura Y, Bright EC, Hess AD. Functional divergence of antigen-specific T-lymphocyte responses in syngeneic graft-versus-host disease. Biol Blood Marrow Transplant. 2004;10:591–603.

    Article  PubMed  CAS  Google Scholar 

  31. Hess AD, Thoburn CJ, Chen W, Horwitz LR. Complexity of effector mechanisms in syngeneic graft-vs-host disease. Biol Blood Marrow Transplant. 2000;6:13–24.

    Article  PubMed  CAS  Google Scholar 

  32. Sykes M. Mechanisms of tolerance. In: Blume KG, Forman SJ, Appelbaum FR, editors. Thomas’ hematopoietic cell transplantation. Malden: Blackwell; 2004. p. 300–23.

    Google Scholar 

  33. Hess AD, Fischer AC, Horwitz L, Bright EC, Laulis MK. Characterization of peripheral autoregulatory mechanisms that prevent development of Cyclosporine-induced syngeneic graft-vs-host disease. J Immunol. 1994;153:400–11.

    PubMed  CAS  Google Scholar 

  34. Taylor PA, Noelle RJ, Blazar BR. CD4+ CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via co-stimulatory blockade. J Exp Med. 2001;193:1311–8.

    Article  PubMed  CAS  Google Scholar 

  35. Tutschka PJ, Hess AD, Beschorner WE, Santos GW. Suppressor cells in the transplantation tolerance. I. Suppressor cells in the mechanism of tolerance in radiation chimeras. Transplantation. 1981;32:203–9.

    Article  PubMed  CAS  Google Scholar 

  36. Tutschka PJ, Hess AD, Beschorner WE, Santos GW. Suppressor cells in transplantation tolerance. III. The role of antigen in the maintenance of transplantation tolerance. Transplantation. 1982;33:510–4.

    Article  PubMed  CAS  Google Scholar 

  37. Tutschka PJ, Ki P, Beschorner WE, et al. Suppressor cells in transplantation tolerance. II. Maturation of suppressor cells in the bone marrow chimera. Transplantation. 1985;32:321–9.

    Article  Google Scholar 

  38. Hess AD, Thoburn CJ. Immune tolerance to self-MHC class II antigens after bone marrow transplantation: regulatory role of CD4+ CD25+ Foxp3+ T cells. Biol Blood Marrow Transplant. 2006;12:518–29.

    Article  PubMed  CAS  Google Scholar 

  39. Wu DY, Goldschneider I. Cyclosporin-induced autologous graft-vs-host disease: a prototypical model of autoimmunity and active (dominant) tolerance coordinately expressed induced by recent thymic emigrants. J Immunol. 1999;162:6926–33.

    PubMed  CAS  Google Scholar 

  40. Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nature Rev. 2003;3:199–210.

    Article  CAS  Google Scholar 

  41. Hoffmann P, Ermann J, Edinger J, et al. Donor type CD4+ CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 2002;196:389–99.

    Article  PubMed  CAS  Google Scholar 

  42. Joffre O, Gorssee N, Romagnoli P, et al. Induction of antigen-specific tolerance to bone marrow allografts with CD4+ CD25+ T lymphocytes. Blood. 2004;103:4216–21.

    Article  PubMed  CAS  Google Scholar 

  43. Jiang S, Lechler RI. Regulatory T cells in the control of transplantation tolerance and autoimmunity. Am J Transpl. 2003;3:516–24.

    Article  CAS  Google Scholar 

  44. Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Ann Rev Immunol. 2004;22:531–62.

    Article  CAS  Google Scholar 

  45. Jordan MS, Boesteanu A, Reed AJ, et al. Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonistic self-peptide. Nat Immunol. 2001;2:301–6.

    Article  PubMed  CAS  Google Scholar 

  46. Bensinger SJ, Bandeira A, Jordan MS, et al. Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+ CD25+ immunoregulatory T cells. J Exp Med. 2001;194:427–38.

    Article  PubMed  CAS  Google Scholar 

  47. Watanabe N, Hong-Wang Y, Lee HK, et al. Hassal’s corpuscles instruct dendritic cells to induce CD4+ CD25+ regulatory T cells in human thymus. Nature. 2005;436:1181–5.

    Article  PubMed  CAS  Google Scholar 

  48. Piccirillo CA, Thornton AM. Cornerstone of peripheral tolerance: naturally occurring CD4+ CD25+ regulatory T cells. Trends Immunol. 2004;25:374–80.

    Article  PubMed  CAS  Google Scholar 

  49. Read S, Powrie F. CD4+ regulatory T cells. Curr Opin Immunol. 2001;13:644–9.

    Article  PubMed  CAS  Google Scholar 

  50. Shevach E. Regulatory T cells in autoimmunity. Ann Rev Immunol. 2000;18:423–49.

    Article  CAS  Google Scholar 

  51. Taylor PA, Panoskaltsis-Mortari A, Swedin JM, et al. L-selectin-hi but not the L-selectin-lo CD4+ 25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood. 2004;104:3804–12.

    Article  PubMed  CAS  Google Scholar 

  52. Fehervari Z, Sakaguchi S. Control of Foxp3+ CD25+ CD4+ regulatory cell activation and function by dendritic cells. Inter Immunol. 2004;16:1769–80.

    Article  CAS  Google Scholar 

  53. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61.

    Article  PubMed  CAS  Google Scholar 

  54. Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+ CD25+ T regulatory cells. Nat Immunol. 2003;4:337–42.

    Article  PubMed  CAS  Google Scholar 

  55. Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family of transcription factor Foxp3. Nat Immunol. 2005;6:331–7.

    Article  PubMed  CAS  Google Scholar 

  56. Miura Y, Thoburn CJ, Bright EC, et al. Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood. 2004;104:2187–93.

    Article  PubMed  CAS  Google Scholar 

  57. Liu JW, Liu ZR, Witkowski P, et al. Rat CD8+ Foxp3+ T suppressor cells mediate tolerance to allogeneic heart transplants, inducing PIR-B in APC and rendering the graft invulnerable to rejection. Transpl Immunol. 2004;13:239–47.

    Article  PubMed  CAS  Google Scholar 

  58. Zorn E, Kim HT, Lee SJ, et al. Reduced frequency of Foxp3+ CD4+ CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood. 2005. Online 21 June 2005.

  59. Rapoport AP, Stadtmauer EA, Aqui N, Vogl D, Chew A, et al. Rapid immune recovery and graft-versus-host disease-like engraftment syndrome following adoptive transfer of costimulated autologous T cells. Clin Cancer Res. 2009;15:4499–507.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants (CA 15396, CA 82583 and AI 24319) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan D. Hess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, A.D. Reconstitution of self-tolerance after hematopoietic stem cell transplantation. Immunol Res 47, 143–152 (2010). https://doi.org/10.1007/s12026-009-8145-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-009-8145-2

Keywords

Navigation