Skip to main content
Log in

Immunologic research in kidney ischemia/reperfusion injury at Johns Hopkins University

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstracts

Kidney ischemia/reperfusion injury (IRI) is a common and serious problem in hospitalized patients. Immune cell trafficking and leukocyte-endothelial adhesion potentiate kidney IRI. An important immunomodulatory role of T lymphocytes has been elucidated in IRI. Regulatory T cells are a lymphocyte subset that has recently been demonstrated to perform a protective role both in early injury from IRI as well as in later repair. The immune system also participates in distant organ effects during kidney IRI. Studies focusing on immune aspects of kidney IRI have enabled the discovery of promising novel therapeutic and diagnostic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Star RA. Treatment of acute renal failure. Kidney Int. 1998;54:1817–31.

    Article  CAS  PubMed  Google Scholar 

  2. Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST, Choudhury D, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359:7–20.

    Article  CAS  PubMed  Google Scholar 

  3. Xue JL, Daniels F, Star RA, Kimmel PL, Eggers PW, Molitoris BA, et al. Incidence and mortality of acute renal failure in medicare beneficiaries, 1992 to 2001. J Am Soc Nephrol. 2006;17:1135–42.

    Article  PubMed  Google Scholar 

  4. Tilney NL, Guttmann RD. Effects of initial ischemia/reperfusion injury on the transplanted kidney. Transplantation. 1997;64:945–7.

    Article  CAS  PubMed  Google Scholar 

  5. Rabb H, Bonventre J. Therapy in nephrology and hypertension: a companion to Brenner and Rector’s ‘the Kidney’. Philadelphia: WB Saunders; 1998.

    Google Scholar 

  6. Rabb H, Star R. Inflammatory response and its consequences in acute renal failure. In: Molitoris B, Finn W, editors. Acute renal failure: a companion to Brenner and Rector’s ‘the Kidney’. Philadelphia: WB Saunders; 2001. p. 89–100.

    Google Scholar 

  7. Rabb H. Role of leukocytes and leukocyte adhesion molecules in renal ischemic-reperfusion injury. Front Biosci. 1996;1:e9–14.

    CAS  PubMed  Google Scholar 

  8. Rabb H, O’Meara YM, Maderna P, Coleman P, Brady HR. Leukocytes, cell adhesion molecules and ischemic acute renal failure. Kidney Int. 1997;51:1463–8.

    Article  CAS  PubMed  Google Scholar 

  9. Rabb H, Michishita M, Sharma CP, Brown D, Arnaout MA. Cytoplasmic tails of human complement receptor type 3 (CR3, CD11b/CD18) regulate ligand avidity and the internalization of occupied receptors. J Immunol. 1993;151:990–1002.

    CAS  PubMed  Google Scholar 

  10. Rabb H, Mendiola CC, Dietz J, Saba SR, Issekutz TB, Abanilla F, et al. Role of CD11a and CD11b in ischemic acute renal failure in rats. Am J Physiol. 1994;267:F1052–8.

    CAS  PubMed  Google Scholar 

  11. Rabb H, Mendiola CC, Saba SR, Dietz JR, Smith CW, Bonventre JV, et al. Antibodies to ICAM-1 protect kidneys in severe ischemic reperfusion injury. Biochem Biophys Res Commun. 1995;211:67–73.

    Article  CAS  PubMed  Google Scholar 

  12. Rabb H, Ramirez G, Saba SR, Reynolds D, Xu J, Flavell R, et al. Renal ischemic-reperfusion injury in L-selectin-deficient mice. Am J Physiol. 1996;271:F408–13.

    CAS  PubMed  Google Scholar 

  13. Nemoto T, Burne MJ, Daniels F, O’Donnell MP, Crosson J, Berens K, et al. Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure. Kidney Int. 2001;60:2205–14.

    Article  CAS  PubMed  Google Scholar 

  14. Burne MJ, Rabb H. Pathophysiological contributions of fucosyltransferases in renal ischemia reperfusion injury. J Immunol. 2002;169:2648–52.

    CAS  PubMed  Google Scholar 

  15. Rabb H. The T cell as a bridge between innate and adaptive immune systems: implications for the kidney. Kidney Int. 2002;61:1935–46.

    Article  CAS  PubMed  Google Scholar 

  16. Rabb H, Daniels F, O’Donnell M, Haq M, Saba SR, Keane W, et al. Pathophysiological role of T lymphocytes in renal ischemia–reperfusion injury in mice. Am J Physiol Renal Physiol. 2000;279:F525–31.

    CAS  PubMed  Google Scholar 

  17. Burne MJ, Daniels F, El Ghandour A, Mauiyyedi S, Colvin RB, O’Donnell MP, et al. Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest. 2001;108:1283–90.

    CAS  PubMed  Google Scholar 

  18. Yokota N, Daniels F, Crosson J, Rabb H. Protective effect of T cell depletion in murine renal ischemia–reperfusion injury. Transplantation. 2002;74:759–63.

    Article  CAS  PubMed  Google Scholar 

  19. Yokota N, Burne-Taney M, Racusen L, Rabb H. Contrasting roles for STAT4 and STAT6 signal transduction pathways in murine renal ischemia–reperfusion injury. Am J Physiol Renal Physiol. 2003;285:F319–25.

    CAS  PubMed  Google Scholar 

  20. Shen XD, Ke B, Zhai Y, Gao F, Anselmo D, Lassman CR, et al. STAT4 and STAT6 signaling in hepatic ischemia/reperfusion injury in mice: HO-1 dependence of STAT4 disruption-mediated cytoprotection. Hepatology. 2003;37:296–303.

    Article  CAS  PubMed  Google Scholar 

  21. Bacon KB, Premack BA, Gardner P, Schall TJ. Activation of dual T cell signaling pathways by the chemokine RANTES. Science. 1995;269:1727–30.

    Article  CAS  PubMed  Google Scholar 

  22. Noiri E, Doi K, Inagi R, Nangaku M, Fujita T. Contribution of T lymphocytes to rat renal ischemia/reperfusion injury. Clin Exp Nephrol. 2009;13:25–32.

    Article  CAS  PubMed  Google Scholar 

  23. Ascon DB, Lopez-Briones S, Liu M, Ascon M, Savransky V, Colvin RB, et al. Phenotypic and functional characterization of kidney-infiltrating lymphocytes in renal ischemia reperfusion injury. J Immunol. 2006;177:3380–7.

    CAS  PubMed  Google Scholar 

  24. Saito H, Kitamoto M, Kato K, Liu N, Kitamura H, Uemura K, et al. Tissue factor and factor V involvement in rat peritoneal fibrosis. Perit Dial Int. 2009;29:340–51.

    PubMed  Google Scholar 

  25. Savransky V, Molls RR, Burne-Taney M, Chien CC, Racusen L, Rabb H. Role of the T-cell receptor in kidney ischemia–reperfusion injury. Kidney Int. 2006;69:233–8.

    Article  CAS  PubMed  Google Scholar 

  26. Satpute SR, Park JM, Jang HR, Agreda P, Liu M, Gandolfo MT, et al. The role for T cell repertoire/antigen-specific interactions in experimental kidney ischemia reperfusion injury. J Immunol. 2009;183:984–92.

    Article  CAS  PubMed  Google Scholar 

  27. Liu M, Chien CC, Burne-Taney M, Molls RR, Racusen LC, Colvin RB, et al. A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity. J Am Soc Nephrol. 2006;17:765–74.

    Article  CAS  PubMed  Google Scholar 

  28. Burne-Taney MJ, Yokota N, Rabb H. Persistent renal and extrarenal immune changes after severe ischemic injury. Kidney Int. 2005;67:1002–9.

    Article  PubMed  Google Scholar 

  29. Ascon M, Ascon DB, Liu M, Cheadle C, Sarkar C, Racusen L, et al. Renal ischemia–reperfusion leads to long term infiltration of activated and effector-memory T lymphocytes. Kidney Int. 2009;75:526–35.

    Article  CAS  PubMed  Google Scholar 

  30. Burne-Taney MJ, Liu M, Ascon D, Molls RR, Racusen L, Rabb H. Transfer of lymphocytes from mice with renal ischemia can induce albuminuria in naive mice: a possible mechanism linking early injury and progressive renal disease? Am J Physiol Renal Physiol. 2006;291:F981–6.

    Article  CAS  PubMed  Google Scholar 

  31. Shevach EM. From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity. 2006;25:195–201.

    Article  CAS  PubMed  Google Scholar 

  32. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.

    CAS  PubMed  Google Scholar 

  33. Taylor PA, Noelle RJ, Blazar BR. CD4(+)CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med. 2001;193:1311–8.

    Article  CAS  PubMed  Google Scholar 

  34. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15:192–9.

    Article  CAS  PubMed  Google Scholar 

  35. Ascon DB, Ascon M, Satpute S, Lopez-Briones S, Racusen L, Colvin RB, et al. Normal mouse kidneys contain activated and CD3+ CD4 CD8 double-negative T lymphocytes with a distinct TCR repertoire. J Leukoc Biol. 2008;84:1400–9.

    Article  CAS  PubMed  Google Scholar 

  36. Gandolfo MT, Jang HR, Bagnasco SM, Ko GJ, Agreda P, Satpute SR, et al. Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney Int. 2009;76:717–29.

    Article  CAS  PubMed  Google Scholar 

  37. Kinsey GR, Sharma R, Huang L, Li L, Vergis AL, Ye H, et al. Regulatory T cells suppress innate immunity in kidney ischemia–reperfusion injury. J Am Soc Nephrol. 2009;20:1744–53.

    Article  CAS  PubMed  Google Scholar 

  38. Gandolfo MT, Jang HR, Bagnasco SM, Agreda P, Soloski MJ, Crow MT et al.: Mycophenolate mofetil retards repair from ischemic acute kidney injury by a T lymphocyte-mediated mechanism. ASN renal week 2009, San diego; 2009.

  39. Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med. 1998;104:343–8.

    Article  CAS  PubMed  Google Scholar 

  40. Kramer AA, Postler G, Salhab KF, Mendez C, Carey LC, Rabb H. Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. Kidney Int. 1999;55:2362–7.

    Article  CAS  PubMed  Google Scholar 

  41. Rabb H, Wang Z, Nemoto T, Hotchkiss J, Yokota N, Soleimani M. Acute renal failure leads to dysregulation of lung salt and water channels. Kidney Int. 2003;63:600–6.

    Article  CAS  PubMed  Google Scholar 

  42. Hassoun HT, Grigoryev DN, Lie ML, Liu M, Cheadle C, Tuder RM, et al. Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy. Am J Physiol Renal Physiol. 2007;293:F30–40.

    Article  CAS  PubMed  Google Scholar 

  43. Grigoryev DN, Liu M, Hassoun HT, Cheadle C, Barnes KC, Rabb H. The local and systemic inflammatory transcriptome after acute kidney injury. J Am Soc Nephrol. 2008;19:547–58.

    Article  CAS  PubMed  Google Scholar 

  44. Hassoun HT, Lie ML, Grigoryev DN, Liu M, Tuder RM, Rabb H. Kidney ischemia–reperfusion injury induces caspase-dependent pulmonary apoptosis. Am J Physiol Renal Physiol. 2009;297:F125–37.

    Article  CAS  PubMed  Google Scholar 

  45. Feltes C, Rabb H: Acute kidney injury leads to pulmonary endothelial cell transcriptional, cytoskeletal and apoptotic changes. ASN renal week 2009, San Diego; 2009.

  46. Liu M, Stins M, Saleem S, Dore S, Rabb H: Acute kidney injury disrupts blood brain barrier and increases susceptibility to stroke. ASN renal week 2009, San Diego; 2009.

  47. Hoke TS, Douglas IS, Klein CL, He Z, Fang W, Thurman JM, et al. Acute renal failure after bilateral nephrectomy is associated with cytokine-mediated pulmonary injury. J Am Soc Nephrol. 2007;18:155–64.

    Article  CAS  PubMed  Google Scholar 

  48. Kelly KJ. Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol. 2003;14:1549–58.

    Article  CAS  PubMed  Google Scholar 

  49. Liu M, Liang Y, Chigurupati S, Lathia JD, Pletnikov M, Sun Z, et al. Acute kidney injury leads to inflammation and functional changes in the brain. J Am Soc Nephrol. 2008;19:1360–70.

    Article  CAS  PubMed  Google Scholar 

  50. Kuiper JW, Groeneveld AB, Slutsky AS, Plotz FB. Mechanical ventilation and acute renal failure. Crit Care Med. 2005;33:1408–15.

    Article  PubMed  Google Scholar 

  51. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999;282:54–61.

    Article  CAS  PubMed  Google Scholar 

  52. Jang HR, Rabb H. The innate immune response in ischemic acute kidney injury. Clin Immunol. 2009;130:41–50.

    Article  CAS  PubMed  Google Scholar 

  53. Scheel PJ, Liu M, Rabb H. Uremic lung: new insights into a forgotten condition. Kidney Int. 2008;74:849–51.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIDDK, NHLBI, NKF, and AHA. We are grateful to the many trainees and staff who have contributed to the work summarized in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Rabb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, G.J., Zakaria, A., Womer, K.L. et al. Immunologic research in kidney ischemia/reperfusion injury at Johns Hopkins University. Immunol Res 47, 78–85 (2010). https://doi.org/10.1007/s12026-009-8140-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-009-8140-7

Keywords

Navigation