Skip to main content
Log in

Progenitor migration to the thymus and T cell lineage commitment

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

T cells developing in the thymus are ultimately derived from bone marrow (BM) hematopoietic stem cells (HSCs). An understanding of the developmental steps between HSCs and T cells is important for gaining insight into cancers of the T lineage, improving T cell reconstitution after BM transplantation, and also to help ameliorate immunological defects in aging. In this article, we summarize our current understanding of the inter-related fields of early T cell development and thymic aging, and briefly discuss major unresolved questions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Miller JF, Osoba D. Current concepts of the immunological function of the thymus. Physiol Rev. 1967;47:437–520.

    PubMed  CAS  Google Scholar 

  2. Goldschneider I, Komschlies KL, Greiner DL. Studies of thymocytopoiesis in rats and mice I. Kinetics of appearance of thymocytes using a direct intrathymic adoptive transfer assay for thymocyte precursors. J Exp Med. 1986;163:1–17.

    Article  PubMed  CAS  Google Scholar 

  3. Scollay R, Smith J, Stauffer V. Dynamics of early T cells: prothymocyte migration and proliferation in the adult mouse thymus. Immunol Rev. 1986;91:129–57.

    Article  PubMed  CAS  Google Scholar 

  4. Foss DL, Donskoy E, Goldschneider I. The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J Exp Med. 2001;193:365–74.

    Article  PubMed  CAS  Google Scholar 

  5. Wallis VJ, Leuchars E, Chwalinski S, Davies AJ. On the sparse seeding of bone marrow and thymus in radiation chimaeras. Transplantation. 1975;19:2–11.

    Article  PubMed  CAS  Google Scholar 

  6. Kadish JL, Basch RS. Hematopoietic thymocyte precursors I. Assay and kinetics of the appearance of progeny. J Exp Med. 1976;143:1082–99.

    Article  PubMed  CAS  Google Scholar 

  7. Spangrude GJ, Scollay R. Differentiation of hematopoietic stem cells in irradiated mouse thymic lobes Kinetics and phenotype of progeny. J Immunol. 1990;145:3661–8.

    PubMed  CAS  Google Scholar 

  8. Schwarz BA, Sambandam A, Maillard I, Harman BC, Love PE, Bhandoola A. Selective thymus settling regulated by cytokine and chemokine receptors. J Immunol. 2007;178:2008–17.

    PubMed  CAS  Google Scholar 

  9. Petrie HT, Zuniga-Pflucker JC. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu Rev Immunol. 2007;25:649–79.

    Article  PubMed  CAS  Google Scholar 

  10. Schwarz BA, Bhandoola A. Circulating hematopoietic progenitors with T lineage potential. Nat Immunol. 2004;5:953–60.

    Article  PubMed  CAS  Google Scholar 

  11. Bell JJ, Bhandoola A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature. 2008;452:764–7.

    Article  PubMed  CAS  Google Scholar 

  12. Fowlkes BJ, Edison L, Mathieson BJ, Chused TM. Early T lymphocytes differentiation in vivo of adult intrathymic precursor cells. J Exp Med. 1985;162:802–22.

    Article  PubMed  CAS  Google Scholar 

  13. Ceredig R, Sekaly RP, MacDonald HR. Differentiation in vitro of Lyt 2+ thymocytes from embryonic Lyt 2− precursors. Nature. 1983;303:248–50.

    Article  PubMed  CAS  Google Scholar 

  14. Pearse M, Wu L, Egerton M, Wilson A, Shortman K, Scollay R. A murine early thymocyte developmental sequence is marked by transient expression of the interleukin 2 receptor. Proc Natl Acad Sci USA. 1989;86:1614–8.

    Article  PubMed  CAS  Google Scholar 

  15. Godfrey DI, Kennedy J, Suda T, Zlotnik A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3–CD4–CD8 triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol. 1993;150:4244–52.

    PubMed  CAS  Google Scholar 

  16. Shimonkevitz RP, Husmann LA, Bevan MJ, Crispe IN. Transient expression of IL-2 receptor precedes the differentiation of immature thymocytes. Nature. 1987;329:157–9.

    Article  PubMed  CAS  Google Scholar 

  17. Allman D, Sambandam A, Kim S, Miller JP, Pagan A, Well D, et al. Thymopoiesis independent of common lymphoid progenitors. Nat Immunol. 2003;4:168–74.

    Article  PubMed  CAS  Google Scholar 

  18. Porritt HE, Rumfelt LL, Tabrizifard S, Schmitt TM, Zuniga-Pflucker JC, Petrie HT. Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity. 2004;20:735–45.

    Article  PubMed  CAS  Google Scholar 

  19. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997;91:661–72.

    Article  PubMed  CAS  Google Scholar 

  20. Adolfsson J, Borge OJ, Bryder D, Theilgaard-Monch K, Astrand-Grundstrom I, Sitnicka E, et al. Upregulation of Flt3 expression within the bone marrow Lin(−)Sca1(+)c− kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity. 2001;15:659–69.

    Article  PubMed  CAS  Google Scholar 

  21. Christensen JL, Weissman IL. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci USA. 2001;98:14541–6.

    Article  PubMed  CAS  Google Scholar 

  22. Igarashi H, Gregory S, Yokota T, Sakaguchi N, Kincade P. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity. 2002;17:117.

    Article  PubMed  CAS  Google Scholar 

  23. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, et al. Identification of Flt3+lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005;121:295–306.

    Article  PubMed  CAS  Google Scholar 

  24. Lai AY, Kondo M. Identification of a bone marrow precursor of the earliest thymocytes in adult mouse. Proc Natl Acad Sci USA. 2007;104:6311–6.

    Article  PubMed  CAS  Google Scholar 

  25. Perry SS, Wang H, Pierce LJ, Yang AM, Tsai S, Spangrude GJ. L-selectin defines a bone marrow analog to the thymic early T-lineage progenitor. Blood. 2004;103:2990–6.

    Article  PubMed  CAS  Google Scholar 

  26. Perry SS, Welner RS, Kouro T, Kincade PW, Sun XH. Primitive lymphoid progenitors in bone marrow with T lineage reconstituting potential. J Immunol. 2006;177:2880–7.

    PubMed  CAS  Google Scholar 

  27. Umland O, Mwangi WN, Anderson BM, Walker JC, Petrie HT. The blood contains multiple distinct progenitor populations with clonogenic B and T lineage potential. J Immunol. 2007;178:4147–52.

    PubMed  CAS  Google Scholar 

  28. Krueger A, von Boehmer H. Identification of a T lineage-committed progenitor in adult blood. Immunity. 2007;26:105–16.

    Article  PubMed  CAS  Google Scholar 

  29. Till JE, Mc CE. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14:213–22.

    Article  PubMed  CAS  Google Scholar 

  30. Maillard I, Schwarz BA, Sambandam A, Fang T, Shestova O, Xu L, et al. Notch-dependent T-lineage commitment occurs at extrathymic sites following bone marrow transplantation. Blood. 2006;107:3511–9.

    Article  PubMed  CAS  Google Scholar 

  31. Zubkova I, Mostowski H, Zaitseva M. Up-regulation of IL-7, stromal-derived factor-1alpha, thymus-expressed chemokine, and secondary lymphoid tissue chemokine gene expression in the stromal cells in response to thymocyte depletion: implication for thymus reconstitution. J Immunol. 2005;175:2321–30.

    PubMed  CAS  Google Scholar 

  32. Uehara S, Grinberg A, Farber JM, Love PE. A role for CCR9 in T lymphocyte development and migration. J Immunol. 2002;168:2811–9.

    PubMed  CAS  Google Scholar 

  33. Wurbel MA, Malissen B, Campbell JJ. Complex regulation of CCR9 at multiple discrete stages of T cell development. Eur J Immunol. 2006;36:73–81.

    Article  PubMed  CAS  Google Scholar 

  34. Benz C, Bleul CC. A multipotent precursor in the thymus maps to the branching point of the T versus B lineage decision. J Exp Med. 2005;202:21–31.

    Article  PubMed  CAS  Google Scholar 

  35. Bhandoola A, von Boehmer H, Petrie HT, Zuniga-Pflucker JC. Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from. Immunity. 2007;26:678–89.

    Article  PubMed  CAS  Google Scholar 

  36. Rodewald HR, Ogawa M, Haller C, Waskow C, DiSanto JP. Pro-thymocyte expansion by c-kit and the common cytokine receptor gamma chain is essential for repertoire formation. Immunity. 1997;6:265–72.

    Article  PubMed  CAS  Google Scholar 

  37. von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med. 1995;181:1519–26.

    Article  Google Scholar 

  38. Waskow C, Paul S, Haller C, Gassmann M, Rodewald H. Viable c-Kit(W/W) mutants reveal pivotal role for c-kit in the maintenance of lymphopoiesis. Immunity. 2002;17:277–88.

    Article  PubMed  CAS  Google Scholar 

  39. Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC, et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med. 1994;180:1955–60.

    Article  PubMed  CAS  Google Scholar 

  40. Sambandam A, Maillard I, Zediak VP, Xu L, Gerstein RM, Aster JC, et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol. 2005;6:663–70.

    Article  PubMed  CAS  Google Scholar 

  41. D’Amico A, Wu L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J Exp Med. 2003;198:293–303.

    Article  PubMed  CAS  Google Scholar 

  42. Kenins L, Gill JW, Boyd RL, Hollander GA, Wodnar-Filipowicz A. Intrathymic expression of Flt3 ligand enhances thymic recovery after irradiation. J Exp Med. 2008;205:523–31.

    Article  PubMed  CAS  Google Scholar 

  43. Godfrey DI, Zlotnik A, Suda T. Phenotypic and functional characterization of c-kit expression during intrathymic T cell development. J Immunol. 1992;149:2281–5.

    PubMed  CAS  Google Scholar 

  44. Matsuzaki Y, Gyotoku J, Ogawa M, Nishikawa S, Katsura Y, Gachelin G, et al. Characterization of c-kit positive intrathymic stem cells that are restricted to lymphoid differentiation. J Exp Med. 1993;178:1283–92.

    Article  PubMed  CAS  Google Scholar 

  45. Wu L, Scollay R, Egerton M, Pearse M, Spangrude GJ, Shortman K. CD4 expressed on earliest T-lineage precursor cells in the adult murine thymus. Nature. 1991;349:71–4.

    Article  PubMed  CAS  Google Scholar 

  46. Wu L, Antica M, Johnson GR, Scollay R, Shortman K. Developmental potential of the earliest precursor cells from the adult mouse thymus. J Exp Med. 1991;174:1617–27.

    Article  PubMed  CAS  Google Scholar 

  47. King AG, Kondo M, Scherer DC, Weissman IL. Lineage infidelity in myeloid cells with TCR gene rearrangement: a latent developmental potential of proT cells revealed by ectopic cytokine receptor signaling. Proc Natl Acad Sci USA. 2002;99:4508–13.

    Article  PubMed  CAS  Google Scholar 

  48. Schmitt TM, Zuniga-Pflucker JC. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity. 2002;17:749–56.

    Article  PubMed  CAS  Google Scholar 

  49. Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T, Katsura Y, et al. Adult T-cell progenitors retain myeloid potential. Nature. 2008;452:768–72.

    Article  PubMed  CAS  Google Scholar 

  50. Borghesi L, Hsu L-Y, Miller JP, Anderson M, Herzenberg L, Herzenberg L, et al. B lineage-specific regulation of V(D)J recombinase activity is established in common lymphoid progenitors. J Exp Med. 2004;199:491–502.

    Article  PubMed  CAS  Google Scholar 

  51. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR, et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity. 1999;10:547–58.

    Article  PubMed  CAS  Google Scholar 

  52. Pui JC, Allman D, Xu L, DeRocco S, Karnell FG, Bakkour S, et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity. 1999;11:299–308.

    Article  PubMed  CAS  Google Scholar 

  53. Tan JB, Visan I, Yuan JS, Guidos CJ. Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nat Immunol. 2005;6:671–9.

    Article  PubMed  CAS  Google Scholar 

  54. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE. Involution of the mammalian thymus, one of the leading regulators of aging. In Vivo. 1997;11:421–40.

    PubMed  CAS  Google Scholar 

  55. Haynes L, Swain SL. Why aging T cells fail: implications for vaccination. Immunity. 2006;24:663–6.

    Article  PubMed  CAS  Google Scholar 

  56. Hakim FT, Memon SA, Cepeda R, Jones EC, Chow CK, Kasten-Sportes C, et al. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J Clin Invest. 2005;115:930–9.

    PubMed  CAS  Google Scholar 

  57. Mackall CL, Stein D, Fleisher TA, Brown MR, Hakim FT, Bare CV, et al. Prolonged CD4 depletion after sequential autologous peripheral blood progenitor cell infusions in children and young adults. Blood. 2000;96:754–62.

    PubMed  CAS  Google Scholar 

  58. Aspinall R, Andrew D. Age-associated thymic atrophy is not associated with a deficiency in the CD44(+)CD25(−)CD3(−)CD4(−)CD8(−) thymocyte population. Cell Immunol. 2001;212:150–7.

    Article  PubMed  CAS  Google Scholar 

  59. Min H, Montecino-Rodriguez E, Dorshkind K. Reduction in the developmental potential of intrathymic T cell progenitors with age. J Immunol. 2004;173:245–50.

    PubMed  CAS  Google Scholar 

  60. Zediak VP, Maillard I, Bhandoola A. Multiple prethymic defects underlie age-related loss of T progenitor competence. Blood. 2007;110:1161–7.

    Article  PubMed  CAS  Google Scholar 

  61. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ. Weissman IL: Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA. 2005;102:9194–9.

    Article  PubMed  CAS  Google Scholar 

  62. Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL. The aging of hematopoietic stem cells. Nat Med. 1996;2:1011–6.

    Article  PubMed  CAS  Google Scholar 

  63. Yilmaz OH, Kiel MJ, Morrison SJ. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood. 2006;107:924–30.

    Article  PubMed  CAS  Google Scholar 

  64. Sudo K, Ema H, Morita Y, Nakauchi H. Age-associated characteristics of murine hematopoietic stem cells. J Exp Med. 2000;192:1273–80.

    Article  PubMed  CAS  Google Scholar 

  65. Kumar R, Langer JC, Snoeck HW. Transforming growth factor-beta2 is involved in quantitative genetic variation in thymic involution. Blood. 2006;107:1974–9.

    Article  PubMed  CAS  Google Scholar 

  66. Prat M, Demarquay C, Frick J, Thierry D, Gorin NC, Bertho JM. Radiation-induced increase in plasma Flt3 ligand concentration in mice: evidence for the implication of several cell types. Radiat Res. 2005;163:408–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH (AB). AB is also the recipient of a Leukemia and Lymphoma Society Scholar Award. JJB is supported by an institutional training grant from the NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Bhandoola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sambandam, A., Bell, J.J., Schwarz, B.A. et al. Progenitor migration to the thymus and T cell lineage commitment. Immunol Res 42, 65–74 (2008). https://doi.org/10.1007/s12026-008-8035-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-008-8035-z

Keywords

Navigation