Skip to main content

Advertisement

Log in

Autoimmunity in the immune privileged eye: pathogenic and regulatory T cells

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Experimental autoimmune uveitis (EAU) in animals serves as a model of human uveitis. EAU can be induced in mice by immunization with the retinal antigen interphotoreceptor retinoid binding protein (IRBP) in complete Freund’s adjuvant (CFA) or by IRBP-pulsed mature dendritic cells, and can be driven either by a Th17 or a Th1 effector response, depending on the model. The direction of the response is affected by conditions present during the exposure to antigen, including the quality/quantity of innate receptor stimulation and/or type of APC. IL-17 and IFN-γ production by innate cells such as NKT may also affect the disease process. If exposure to antigen is via a hydrodynamic DNA vaccination with an IRBP-encoding plasmid, the response is directed to a regulatory phenotype, and disease is ameliorated or prevented. Our data shed light on effector and regulatory responses in autoimmune disease, provide balance to the Th1/Th17 paradigm and help to explain the clinical heterogeneity of human uveitis, which occurs in the face of responses to the same ocular antigen(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gritz DC, Wong IG. Incidence and prevalence of uveitis in Northern California; the Northern California Epidemiology of Uveitis Study. Ophthalmology. 2004;111:491–500; discussion 500.

    Google Scholar 

  2. Nussenblatt RB, Whitcup SM. Uveitis: fundamentals and clinical practice. 3rd ed. Philadelphia, PA: Mosby (Elsevier); 2004.

  3. Gery I, Nussenblatt RB, Chan CC, Caspi RR. Autoimmune diseases of the eye. The molecular pathology of autoimmune diseases. 2nd ed. New York, NY: Taylor and Francis; 2002:978–98.

  4. Agarwal RK, Caspi RR. Rodent models of experimental autoimmune uveitis. Methods Mol Med. 2004;102:395–419.

    PubMed  CAS  Google Scholar 

  5. Stein-Streilein J, Streilein JW. Anterior chamber associated immune deviation (ACAID): regulation, biological relevance, and implications for therapy. Int Rev Immunol. 2002;21:123–52.

    Article  PubMed  Google Scholar 

  6. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298:1395–401.

    Article  PubMed  CAS  Google Scholar 

  7. Egwuagu CE, Charukamnoetkanok P, Gery I. Thymic expression of autoantigens correlates with resistance to autoimmune disease. J Immunol. 1997;159:3109–12.

    PubMed  CAS  Google Scholar 

  8. Avichezer D, Grajewski RS, Chan CC, Mattapallil MJ, Silver PB, Raber JA, et al. An immunologically privileged retinal antigen elicits tolerance: major role for central selection mechanisms. J Exp Med. 2003;198:1665–76.

    Article  PubMed  CAS  Google Scholar 

  9. Grajewski RS, Silver PB, Agarwal RK, Su S-B, Chan C-C, Liou GI, et al. Endogenous IRBP can be dispensable for generation of natural CD4+ CD25+ T-regs that protect from IRBP-induced retinal autoimmunity. J Exp Med. 2006;203:851–6.

    Article  PubMed  CAS  Google Scholar 

  10. Gallegos AM, Bevan MJ. Central tolerance: good but imperfect. Immunol Rev. 2006;209:290–6.

    Article  PubMed  Google Scholar 

  11. Cortes LM, Mattapallil MJ, Silver PB, Donoso LA, Liou GI, Zhu W, et al. Repertoire analysis and new pathogenic epitopes of IRBP in C57BL/6 (H–2b) and B10.RIII (H–2r) mice. Invest Ophthalmol Vis Sci. 2008;49:1946–56.

    Article  PubMed  Google Scholar 

  12. Tang J, Zhu W, Silver PB, Su SB, Chan CC, Caspi RR. Autoimmune uveitis elicited with antigen-pulsed dendritic cells has a distinct clinical signature and is driven by unique effector mechanisms: initial encounter with autoantigen defines disease phenotype. J Immunol. 2007;178:5578–87.

    PubMed  CAS  Google Scholar 

  13. Caspi RR. Animal models of autoimmune and immune-mediated uveitis. Drug Discov Today: Dis Mod, (http://www.sciencedirectcom/science/journal/17406757). 2006;3:3–10.

  14. Caspi RR. Ocular autoimmunity: the price of privilege? Immunol Rev. 2006;213:23–35.

    Article  PubMed  Google Scholar 

  15. Pennesi G, Mattapallil MJ, Sun SH, Avichezer D, Silver PB, Karabekian Z, et al. A humanized model of experimental autoimmune uveitis in HLA class II transgenic mice. J Clin Invest. 2003;111:1171–80.

    PubMed  CAS  Google Scholar 

  16. Tarrant Silver PB, Chan CC, Wiggert B, Caspi RR. Endogenous IL-12 is required for induction and expression of EAU. J Immunol. 1998;161:122–127.

    Google Scholar 

  17. Caspi RR, Chan CC, Grubbs BG, Silver PB, Wiggert B, Parsa CF, et al. Endogenous systemic IFN-gamma has a protective role against ocular autoimmunity in mice. J Immunol. 1994;152:890–9.

    PubMed  CAS  Google Scholar 

  18. Jones LS, Rizzo LV, Agarwal RK, Tarrant TK, Chan CC, Wiggert B, et al. IFN-gamma-deficient mice develop experimental autoimmune uveitis in the context of a deviant effector response. J Immunol. 1997;158:5997–6005.

    PubMed  CAS  Google Scholar 

  19. Veldhoen M, Hocking RJ, Flavell RA, Stockinger B. Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol. 2006;7:1151–6.

    Article  PubMed  CAS  Google Scholar 

  20. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  PubMed  CAS  Google Scholar 

  21. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL–23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.

    Article  PubMed  CAS  Google Scholar 

  22. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. Interleukin–23 rather than interleukin–12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8.

    Article  PubMed  CAS  Google Scholar 

  23. Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med. 2008;205:799–810.

    Article  PubMed  CAS  Google Scholar 

  24. Chi W, Yang P, Li B, Wu C, Jin H, Zhu X, et al. IL-23 promotes CD4 + T cells to produce IL-17 in Vogt-Koyanagi-Harada disease. J Allergy Clin Immunol. 2007;119:1218–24.

    Article  PubMed  CAS  Google Scholar 

  25. Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB, et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL–2 and inhibited by IL-27/STAT1. Nat Med. 2007;13:711–8.

    Article  PubMed  CAS  Google Scholar 

  26. Chi W, Zhu X, Yang P, Liu X, Lin X, Zhou H, et al. Upregulated IL-23 and IL-17 in behcet patients with active uveitis. Invest Ophthalmol Vis Sci. 2008;49:3058–64.

    Article  PubMed  Google Scholar 

  27. Song YK, Liu F, Zhang G, Liu D. Hydrodynamics-based transfection: simple and efficient method for introducing and expressing transgenes in animals by intravenous injection of DNA. Methods Enzymol. 2002;346:92–105.

    Article  PubMed  CAS  Google Scholar 

  28. Rachitskaya AV, Hansen AM, Horai R, Li Z, Villasmil R, Luger D, et al. Cutting edge: NKT cells constitutively express IL-23 receptor and RORgammat and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J Immunol. 2008;180:5167–71.

    PubMed  CAS  Google Scholar 

  29. Grajewski* RS, Hansen* AM, Agarwal RK, Kronenberg M, Sidobre S, Su SB, et al. Activation of iNKT cells ameliorates experimental ocular autoimmunity by a mechanism involving innate IFN-gamma production and dampening of the adaptive Th1 and Th17 responses (submitted).

  30. Tarrant TK, Silver PB, Wahlsten JL, Rizzo LV, Chan CC, Wiggert B, et al. Interleukin 12 protects from a T helper type 1-mediated autoimmune disease, experimental autoimmune uveitis, through a mechanism involving interferon gamma, nitric oxide, and apoptosis. J Exp Med. 1999;189:219–30.

    Article  PubMed  CAS  Google Scholar 

  31. Kitaichi N, Namba K, Taylor AW. Inducible immune regulation following autoimmune disease in the immune-privileged eye. J Leukoc Biol. 2005;77:496–502.

    Article  PubMed  CAS  Google Scholar 

  32. Stein-Streilein J, Taylor AW. An eye’s view of T regulatory cells. J Leukoc Biol. 2007;81:593–8.

    Article  PubMed  CAS  Google Scholar 

  33. Shevach EM, DiPaolo RA, Andersson J, Zhao DM, Stephens GL, Thornton AM. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev. 2006;212:60–73.

    Article  PubMed  CAS  Google Scholar 

  34. Chen L, Yang P, Zhou H, He H, Ren X, Chi W, et al. Decreased frequency and diminished function of CD4 + CD25high regulatory T cells are associated with active uveitis in patients with Vogt-Koyanagi-Harada syndrome. Invest Ophthalmol Vis Sci. 2008;49:3058–64.

    Article  Google Scholar 

  35. Silver PB, Agarwal RK, Su SB, Suffia I, Grajewski RS, Luger D, et al. Hydrodynamic vaccination with DNA encoding an immunologically privileged retinal antigen protects from autoimmunity through induction of regulatory T cells. J Immunol. 2007;179:5146–58.

    PubMed  CAS  Google Scholar 

  36. Mattapallil MJ, Sahin A, Silver PB, Sun SH, Chan CC, Remmers EF, et al. Common genetic determinants of uveitis shared with other autoimmune disorders. J Immunol. 2008;180:6751–9.

    PubMed  CAS  Google Scholar 

  37. Mattapallil MJ, Augello A, Cheadle C, Teichberg D, Becker KG, Chan CC, et al. Differentially expressed genes in MHC-compatible rat strains that are susceptible or resistant to experimental autoimmune uveitis. Invest Ophthalmol Vis Sci. 2008;49:1957–70.

    Article  PubMed  Google Scholar 

  38. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Karow M, Flavell RA. Interleukin–22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity. 2007;27:647–59.

    Article  PubMed  CAS  Google Scholar 

  39. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445:648–51.

    Article  PubMed  CAS  Google Scholar 

  40. Caspi RR, Roberge FG, Nussenblatt RB. Organ-resident, nonlymphoid cells suppress proliferation of autoimmune T-helper lymphocytes. Science. 1987;237:1029.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Caspi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caspi, R. Autoimmunity in the immune privileged eye: pathogenic and regulatory T cells. Immunol Res 42, 41–50 (2008). https://doi.org/10.1007/s12026-008-8031-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-008-8031-3

Keywords

Navigation