Skip to main content

Advertisement

Log in

FOXP3 and its partners: structural and biochemical insights into the regulation of FOXP3 activity

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Forkhead box protein P3 (FOXP3) contributes to a unique transcriptional signature and serves as a functional marker of CD4+CD25+ natural regulatory T cells. Dysfunction of FOXP3 in human is associated with fatal autoimmune disease known as immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) or X-linked autoimmunity–allergic disregulation syndrome (XLAAD). FOXP3 also can act as a breast tumor suppressor of the v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (neuro/glioblastoma derived oncogene homolog (avian)) (Her2/neu) gene. While the suppressive functions of FOXP3 in maintaining the immune balance between tolerance and autoimmunity are obvious, the underlying molecular mechanism remains almost entirely undefined. Recent studies indicate that FOXP3 may form a dynamic superamolecular complex with a variety of molecular partners including transcription factors and enzymatic proteins to regulate transcription. How the FOXP3 ensemble changes in response to T-cell receptor signals and/or proinflammatory signal remains unclear although work from this laboratory has revealed its complexity. Structural information on FOXP3 complex may offer novel functional insights, as well as facilitate the development of rational means to modulate regulatory T-cell function in various human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87.

    Article  PubMed  CAS  Google Scholar 

  2. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–1.

    Article  PubMed  CAS  Google Scholar 

  3. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001;27:18–20.

    Article  PubMed  CAS  Google Scholar 

  4. Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C, et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest. 2000;106:R75–81.

    Article  PubMed  CAS  Google Scholar 

  5. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001;27:68–73.

    Article  PubMed  CAS  Google Scholar 

  6. Li B, Samanta A, Song X, Iacono KT, Brennan P, Chatila TA, et al. FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol. 2007;19:825–35.

    Article  PubMed  CAS  Google Scholar 

  7. Wang B, Lin D, Li C, Tucker P. Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J Biol Chem. 2003;278:24259–68.

    Article  PubMed  CAS  Google Scholar 

  8. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell. 2006;126:375–87.

    Article  PubMed  CAS  Google Scholar 

  9. Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA. 2005;102:5138–43.

    Article  PubMed  CAS  Google Scholar 

  10. Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature. 2007;446:685–9.

    Article  PubMed  CAS  Google Scholar 

  11. Lee SM, Gao B, Fang D. FoxP3 maintains Treg unresponsiveness by selectively inhibiting the promoter DNA-binding activity of AP–1. Blood. 2008;111:3599–606.

    Article  PubMed  CAS  Google Scholar 

  12. Li B, Samanta A, Song X, Iacono KT, Bembas K, Tao R, et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA. 2007;104:4571–6.

    Article  PubMed  CAS  Google Scholar 

  13. Li B, Samanta A, Song X, Furuuchi K, Iacono KT, Kennedy S, et al. FOXP3 ensembles in T-cell regulation. Immunol Rev. 2006;212:99–113.

    Article  PubMed  CAS  Google Scholar 

  14. Ebert LM, Tan BS, Browning J, Svobodova S, Russell SE, Kirkpatrick N, et al. The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res. 2008;68:3001–9.

    Article  PubMed  CAS  Google Scholar 

  15. Karanikas V, Speletas M, Zamanakou M, Kalala F, Loules G, Kerenidi T, et al. Foxp3 expression in human cancer cells. J Transl Med. 2008;6:19.

    Google Scholar 

  16. Zuo T, Wang L, Morrison C, Chang X, Zhang H, Li W, et al. FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell. 2007;129:1275–86.

    Article  PubMed  CAS  Google Scholar 

  17. Zuo T, Liu R, Zhang H, Chang X, Liu Y, Wang L, et al. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest. 2007;117:3765–73.

    PubMed  CAS  Google Scholar 

  18. Hinz S, Pagerols-Raluy L, Oberg HH, Ammerpohl O, Grussel S, Sipos B, et al. Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res. 2007;67:8344–50.

    Article  PubMed  CAS  Google Scholar 

  19. Chae WJ, Henegariu O, Lee SK, Bothwell AL. The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells. Proc Natl Acad Sci USA. 2006;103:9631–6.

    Article  PubMed  CAS  Google Scholar 

  20. Lopes JE, Torgerson TR, Schubert LA, Anover SD, Ocheltree EL, Ochs HD, et al. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol. 2006;177:3133–42.

    PubMed  CAS  Google Scholar 

  21. Li B, Greene MI. FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell Cycle. 2007;6:1432–6.

    PubMed  CAS  Google Scholar 

  22. Allan SE, Passerini L, Bacchetta R, Crellin N, Dai M, Orban PC, et al. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J Clin Invest. 2005;115:3276–84.

    Article  PubMed  CAS  Google Scholar 

  23. Ziegler SF. FOXP3: of mice and men. Annu Rev Immunol. 2006;24:209–26.

    Article  PubMed  CAS  Google Scholar 

  24. Du J, Huang C, Zhou B, Ziegler SF. Isoform-specific inhibition of ROR{alpha}-mediated transcriptional activation by human FOXP3. J Immunol. 2008;180:4785–92.

    PubMed  CAS  Google Scholar 

  25. Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008;453:236–40.

    Article  PubMed  CAS  Google Scholar 

  26. Stroud JC, Wu Y, Bates DL, Han A, Nowick K, Paabo S, et al. Structure of the forkhead domain of FOXP2 bound to DNA. Structure. 2006;14:159–66.

    Article  PubMed  CAS  Google Scholar 

  27. Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism. Dev Biol. 2002;250:1–23.

    Article  PubMed  CAS  Google Scholar 

  28. Jin C, Marsden I, Chen X, Liao X, Dynamic DNA. contacts observed in the NMR structure of winged helix protein–DNA complex. J Mol Biol. 1999;289:683–90.

    Article  PubMed  CAS  Google Scholar 

  29. Pierrou S, Hellqvist M, Samuelsson L, Enerback S, Carlsson P. Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. Embo J. 1994;13:5002–12.

    PubMed  CAS  Google Scholar 

  30. Heissmeyer V, Macian F, Im SH, Varma R, Feske S, Venuprasad K, et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat Immunol. 2004;5:255–65.

    Article  PubMed  CAS  Google Scholar 

  31. Heissmeyer V, Rao A. E3 ligases in T cell anergy–turning immune responses into tolerance. Sci STKE. 2004;241:pe29.

    Google Scholar 

  32. Macian F, Garcia-Cozar F, Im SH, Horton HF, Byrne MC, Rao A. Transcriptional mechanisms underlying lymphocyte tolerance. Cell. 2002;109:719–31.

    Article  PubMed  CAS  Google Scholar 

  33. Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol. 1997;15:707–47.

    Article  PubMed  CAS  Google Scholar 

  34. Warren AJ, Bravo J, Williams RL, Rabbitts TH. Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFbeta. Embo J. 2000;19:3004–15.

    Article  PubMed  CAS  Google Scholar 

  35. Bravo J, Li Z, Speck NA, Warren AJ. The leukemia-associated AML1 (Runx1)–CBF beta complex functions as a DNA-induced molecular clamp. Nat Struct Biol. 2001;8:371–8.

    Article  PubMed  CAS  Google Scholar 

  36. Backstrom S, Wolf-Watz M, Grundstrom C, Hard T, Grundstrom T, Sauer UH. The RUNX1 Runt domain at 1.25A resolution: a structural switch and specifically bound chloride ions modulate DNA binding. J Mol Biol. 2002;322:259–72.

    Google Scholar 

  37. Bartfeld D, Shimon L, Couture GC, Rabinovich D, Frolow F, Levanon D, et al. DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. Structure. 2002;10:1395–407.

    Article  PubMed  CAS  Google Scholar 

  38. Li D, Sinha KK, Hay MA, Rinaldi CR, Saunthararajah Y, Nucifora G. RUNX1-RUNX1 homodimerization modulates RUNX1 activity and function. J Biol Chem. 2007;282:13542–51.

    Article  PubMed  CAS  Google Scholar 

  39. Jensen ED, Schroeder TM, Bailey J, Gopalakrishnan R, Westendorf JJ. Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner. J Bone Miner Res. 2008;23:361–72.

    Article  PubMed  CAS  Google Scholar 

  40. Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K, Nakaya M, et al. Foxp3 inhibits RORgamma t-mediated IL–17A mRNA transcription through direct interaction with RORgamma t. J Biol Chem. 2008;283:17003–8.

    Article  PubMed  CAS  Google Scholar 

  41. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    Article  PubMed  CAS  Google Scholar 

  42. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;8:967–74.

    Article  PubMed  CAS  Google Scholar 

  43. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008;28:29–39.

    Article  PubMed  CAS  Google Scholar 

  44. Sapountzi V, Logan IR, Robson CN. Cellular functions of TIP60. Int J Biochem Cell Biol. 2006;38:1496–509.

    Article  PubMed  CAS  Google Scholar 

  45. Squatrito M, Gorrini C, Amati B. Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol. 2006;16:433–42.

    Article  PubMed  CAS  Google Scholar 

  46. Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L, et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature. 2007;448:1063–7.

    Article  PubMed  CAS  Google Scholar 

  47. Xiao H, Chung J, Kao HY, Yang YC. Tip60 is a co-repressor for STAT3. J Biol Chem. 2003;278:11197–204.

    Article  PubMed  CAS  Google Scholar 

  48. Kao HY, Downes M, Ordentlich P, Evans RM. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 2000;14:55–66.

    PubMed  CAS  Google Scholar 

  49. Gray SG, De Meyts P. Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev. 2005;21:416–33.

    Article  PubMed  CAS  Google Scholar 

  50. Yang XJ. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 2004;32:959–76.

    Article  PubMed  CAS  Google Scholar 

  51. Kao HY, Verdel A, Tsai CC, Simon C, Juguilon H, Khochbin S. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J Biol Chem. 2001;276:47496–507.

    Article  PubMed  CAS  Google Scholar 

  52. Fischle W, Dequiedt F, Fillion M, Hendzel MJ, Voelter W, Verdin E. Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem. 2001;276:35826–35.

    Article  PubMed  CAS  Google Scholar 

  53. Verdin E, Dequiedt F, Kasler HG, Class II. histone deacetylases: versatile regulators. Trends Genet. 2003;19:286–93.

    Article  PubMed  CAS  Google Scholar 

  54. Schuetz A, Min J, Allali-Hassani A, Schapira M, Shuen M, Loppnau P, et al. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J Biol Chem. 2008;283:11355–63.

    Article  PubMed  CAS  Google Scholar 

  55. Riester D, Hildmann C, Grunewald S, Beckers T, Schwienhorst A. Factors affecting the substrate specificity of histone deacetylases. Biochem Biophys Res Commun. 2007;357:439–45.

    Article  PubMed  CAS  Google Scholar 

  56. Clemente S, Franco L, Lopez-Rodas G. Distinct site specificity of two pea histone deacetylase complexes. Biochemistry. 2001;40:10671–6.

    Article  PubMed  CAS  Google Scholar 

  57. Col E, Caron C, Chable-Bessia C, Legube G, Gazzeri S, Komatsu Y, et al. HIV–1 Tat targets Tip60 to impair the apoptotic cell response to genotoxic stresses. Embo J. 2005;24:2634–45.

    Article  PubMed  CAS  Google Scholar 

  58. Li B, Saouaf SJ, Samanta A, Shen Y, Hancock WW, Greene MI. Biochemistry and therapeutic implications of mechanisms involved in FOXP3 activity in immune suppression. Curr Opin Immunol. 2007;19:583–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Li or Mark I. Greene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Song, X., Li, B. et al. FOXP3 and its partners: structural and biochemical insights into the regulation of FOXP3 activity. Immunol Res 42, 19–28 (2008). https://doi.org/10.1007/s12026-008-8029-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-008-8029-x

Keywords

Navigation