Skip to main content
Log in

Characterization of splenic CD21hi T2 B cells

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

B cell development is a highly regulated process that initiates in the bone marrow (BM) of adult mice. After reaching the IgM+ immature stage in the BM, these B cells migrate to the spleen to complete maturation and incorporation into the long-lived peripheral lymphocyte pool. Studies have identified these splenic immature B cells, and have further attempted to delineate the sequence whereby they transition into mature B cells. As such, these immature splenic populations are termed transitional B cells and have been the focus of intense study. The review summarizes the phenotype and currently known functions of the four putative transitional B cell subsets identified to date. Although most appear to represent short-lived transitional B cells, the CD21hi T2 B cell population exhibits a number of qualities that question its label as a transitional B cell subset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hardy RR, Hayakawa K. B cell development pathways. Annu Rev Immunol 2001;19:595–621.

    Article  PubMed  CAS  Google Scholar 

  2. Osmond DG. Proliferation kinetics and the lifespan of B cells in central and peripheral lymphoid organs. Curr Opin Immunol 1991;3:179–85.

    Article  PubMed  CAS  Google Scholar 

  3. Osmond DG. The turnover of B-cell populations. Immunol Today 1993;14:34–7.

    Article  PubMed  CAS  Google Scholar 

  4. Allman DM, Ferguson SE, Cancro MP. Peripheral B cell maturation. I. Immature peripheral B cells in adults are heat-stable antigenhi and exhibit unique signaling characteristics. J Immunol 1992;149:2533–40.

    PubMed  CAS  Google Scholar 

  5. Allman DM, Ferguson SE, Lentz VM, Cancro MP. Peripheral B cell maturation. II. Heat-stable antigenhi splenic B cells are an immature developmental intermediate in the production of long-lived marrow-derived B cells. J Immunol 1993;151:4431–44.

    PubMed  CAS  Google Scholar 

  6. Forster I, Rajewsky K. The bulk of the peripheral B-cell pool in mice is stable and not rapidly renewed from the bone marrow. Proc Natl Acad Sci USA 1990;87:4781–4.

    Article  PubMed  CAS  Google Scholar 

  7. Rolink AG, Andersson J, Melchers F. Molecular mechanisms guiding late stages of B-cell development. Immun Rev 2004;197:41–50.

    Article  PubMed  CAS  Google Scholar 

  8. Cancro MP. Peripheral B-cell maturation: the intersection of selection and homeostasis. Immun Rev 2004;197:89–101.

    Article  PubMed  CAS  Google Scholar 

  9. Melchers F, ten Boekel E, Seidl T, Kong XC, Yamagami T, Onishi K, Shimizu T, Rolink AG, Andersson J. Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immun Rev 2000;175:33–46.

    Article  PubMed  CAS  Google Scholar 

  10. Viale AC, Coutinho A, Heyman RA, Freitas AA. V region dependent selection of persistent resting peripheral B cells in normal mice. Int Immunol 1993;5:599–605.

    Article  PubMed  CAS  Google Scholar 

  11. Gu H, Tarlinton D, Muller W, Rajewsky K, Forster I. Most peripheral B cells in mice are ligand selected. J Exp Med 1991;173:1357–71.

    Article  PubMed  CAS  Google Scholar 

  12. Loder F, Mutschler B, Ray RJ, Paige CJ, Sideras P, Torres R, Lamers MC, Carsetti R. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J Exp Med 1999;190:75–89.

    Article  PubMed  CAS  Google Scholar 

  13. Carsetti R, Kohler G, Lamers MC. Transitional B cells are the target of negative selection in the B cell compartment. J Exp Med 1995;181:2129–40.

    Article  PubMed  CAS  Google Scholar 

  14. Su TT, Rawlings DJ. Transitional B lymphocyte subsets operate as distinct checkpoints in murine splenic B cell development. J Immunol 2002;168:2101–10.

    PubMed  CAS  Google Scholar 

  15. Petro JB, Gerstein RM, Lowe J, Carter RS, Shinners N, Khan WN. Transitional type 1 and 2 B lymphocyte subsets are differentially responsive to antigen receptor signaling. J Biol Chem 2002;277:48009–19.

    Article  PubMed  CAS  Google Scholar 

  16. Allman D, Lindsley RC, DeMuth W, Rudd K, Shinton SA, Hardy RR. Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J Immunol 2001;167:6834–40.

    PubMed  CAS  Google Scholar 

  17. Chung JB, Sater RA, Fields ML, Erikson J, Monroe JG. CD23 defines two distinct subsets of immature B cells which differ in their responses to T cell help signals. Int Immunol 2002;14:157–66.

    Article  PubMed  CAS  Google Scholar 

  18. Srivastava B, Quinn WJ 3rd, Hazard K, Erikson J, Allman D. Characterization of marginal zone B cell precursors. J Exp Med 2005;202:1225–34.

    Article  PubMed  CAS  Google Scholar 

  19. Lindsley RC, Thomas M, Srivastava B, Allman D. Generation of peripheral B cells occurs via two spatially and temporally distinct pathways. Blood 2006 Nov 14; [Epub ahead of print].

  20. Oliver AM, Martin F, Gartland GL, Carter RH, Kearney JF. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur J. Immunol 1997;27:2366–74.

    Article  PubMed  CAS  Google Scholar 

  21. Cariappa A, Tang M, Parng C, Nebelitskiy E, Carroll M, Georgopoulos K, Pillai S. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity 2001;14:603–15.

    Article  PubMed  CAS  Google Scholar 

  22. Pillai S, Cariappa A, Moran ST. Marginal zone B cells. Annu Rev Immunol 2005;23:161–96.

    Article  PubMed  CAS  Google Scholar 

  23. Saito T, Chiba S, Ichikawa M, Kunisato A, Asai T, Shimizu K, Yamaguchi T, Yamamoto G, Seo S, Kumano K, Nakagami-Yamaguchi E, Hamada Y, Aizawa S, Hirai H. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 2003;18:675–85.

    Article  PubMed  CAS  Google Scholar 

  24. Grabstein KH, Waldschmidt TJ, Finkelman FD, Hess BW, Alpert AR, Boiani NE, Namen AE, Morrissey PJ. Inhibition of murine B and T lymphopoiesis in vivo by an anti-interleukin 7 monoclonal antibody. J Exp Med 1993;178:257–64.

    Article  PubMed  CAS  Google Scholar 

  25. Erickson LD, Tygrett LT, Bhatia SK, Grabstein KH, Waldschmidt TJ. Differential expression of CD22 (Lyb8) on murine B cells. Int Immunol 1996;8:1121–9.

    Article  PubMed  CAS  Google Scholar 

  26. Liu YJ, Oldfield S, MacLennan IC. Memory B cells in T cell-dependent antibody responses colonize the splenic marginal zones. Eur J Immunol 1988;18:355–62.

    Article  PubMed  CAS  Google Scholar 

  27. Dunn-Walters DK, Isaacson PG, Spencer J. Analysis of mutations in immunoglobulin heavy chain variable region genes of microdissected marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J Exp Med 1995;182:559–66.

    Article  PubMed  CAS  Google Scholar 

  28. Hayakawa K, Ishii R, Yamasaki K, Kishimoto T, Hardy RR Isolation of high-affinity memory B cells: Phycoerythrin as a probe for antigen-binding cells. Proc Natl Acad Sci USA 1987;84:1379–83.

    Article  PubMed  CAS  Google Scholar 

  29. Zeng D, Lee MK, Tung J, Brendolan A, Strober S. Cutting edge: a role for CD1 in the pathogenesis of lupus in NZB/NZW mice. J Immunol 2000;164:5000–4.

    PubMed  CAS  Google Scholar 

  30. Wither JE, Roy V, Brennan LA. Activated B cells express increased levels of costimulatory molecules in young autoimmune NZB and (NZB x NZW)F(1) mice. Clin Immunol 2000;94:51–63.

    Article  PubMed  CAS  Google Scholar 

  31. Grimaldi CM, Michael DJ, Diamond B. Cutting edge: expansion and activation of a population of autoreactive marginal zone B cells in a model of estrogen-induced lupus. J Immunol 2001;167:1886–90.

    PubMed  CAS  Google Scholar 

  32. Wither JE, Loh C, Lajoie G, Heinrichs S, Cai YC, Bonventi G, MacLeod R. Colocalization of expansion of the splenic marginal zone population with abnormal B cell activation and autoantibody production in B6 mice with an introgressed New Zealand Black chromosome 13 interval. J Immunol 2005;175:4309–19.

    PubMed  CAS  Google Scholar 

  33. Martin F, Kearney JF. Marginal-zone B cells. Nat Rev Immunol 2002;2:323–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the technical assistance of Teresa Duling, Gene Hess and Lorraine Tygrett, and the contribution of autoimmune mice by Dr. Polly Ferguson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Waldschmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, S., Waldschmidt, T.J. Characterization of splenic CD21hi T2 B cells. Immunol Res 39, 240–248 (2007). https://doi.org/10.1007/s12026-007-0072-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-007-0072-5

Keywords

Navigation