Skip to main content

Advertisement

Log in

Immunodeficiencies due to defects of class-switch recombination

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Maturation of the antibody response is dependent on class-switch recombination (CSR) and somatic hypermutation (SHM), that modify the structure and the affinity of immunoglobulins, respectively. The cellular and molecular mechanisms involved in these processes have long remained obscure. During the last years, careful investigation of a cohort of rare patients with defective antibody responses have led to the identification of several genes that are critically involved in CSR and SHM. At the same time, recognition that defective maturation of antibody responses may result from different mechanisms, has been essential to better define prognosis and to tailor more appropriate and specific forms of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jung D, Giallourakis C, Mostoslavsky R, Alt FW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Ann Rev Immunol 2006;24:541–70.

    Article  CAS  Google Scholar 

  2. Chaudhuri J, Alt FW. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 2004;4:541–52.

    Article  PubMed  CAS  Google Scholar 

  3. Li Z, Woo CJ, Iglesias-Ussel MD, Ronai D, Scharff MD. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev 2004;18:1–11.

    Article  PubMed  CAS  Google Scholar 

  4. Chaudhuri J, Alt FW. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 2004;4:541–3.

    Article  PubMed  CAS  Google Scholar 

  5. Xu Z, Fulop Z, Zhong Y, Evinger AJ, Zan H, Casali P. DNA lesions and repair in immunoglobulin class switch recombination and somatic hypermutation. Ann N Y Acad Sci 2005;1050:146–62.

    Article  PubMed  CAS  Google Scholar 

  6. Durandy A, Revy P, Fischer A. Human models of inherited immunoglobulin class switch recombination and somatic hypermutation defects (hyper-IgM syndromes). Adv Immunol 2004;82:295–330.

    PubMed  CAS  Google Scholar 

  7. Notarangelo LD, Lanzi G, Peron S, Durandy A. Defects of class-switch recombination. J Allergy Clin Immunol 2006;117:855–64.

    Article  PubMed  CAS  Google Scholar 

  8. Bishop GA, Hostager BS. The CD40-CD154 interaction in B cell-T cell liaisons. Cytokine Growth Factor Rev 2003;14:297–309.

    Article  PubMed  CAS  Google Scholar 

  9. Jain A, Atkinson TP, Lipsky PE, Slater JE, Nelson DL, Strober W. Defects of T-cell effector function and post-thymic maturation in X-linked hyper-IgM syndrome. J Clin Invest 1999;103:1151–8.

    Article  PubMed  CAS  Google Scholar 

  10. Fontana S, Moratto D, Mangal S, et al. Functional defects of dendritic cells in patients with CD40 deficiency. Blood 2003;102:4099–106.

    Article  PubMed  CAS  Google Scholar 

  11. Levy J, Espanol-Boren T, Thomas C, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr 1997;131:47–54.

    Article  PubMed  CAS  Google Scholar 

  12. Winkelstein JA, Marino MC, Ochs H, et al. The X-linked hyper-IgM syndrome. Clinical and immunologic features of 79 patients. Medicine 2003;82:373–84.

    Article  PubMed  CAS  Google Scholar 

  13. Ferrari S, Giliani S, Insalaco A, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper-IgM. Proc Natl Acad Sci USA 2001;98:12614–9.

    Article  PubMed  CAS  Google Scholar 

  14. Gennery AR, Khawaja K, Veys P, et al. Treatment of CD40 ligand deficiency by hematopoietic stem cell transplantation: a survey of the European experience, 1993–2002. Blood 2004;103:1152–7.

    Article  PubMed  CAS  Google Scholar 

  15. Facchetti F, Appiani C, Salvi L, Levy J, Notarangelo LD. Immunohistologic analysis of ineffective CD40–CD40 ligand interaction in lymphoid tissues from patients with X-linked immunodeficiency with hyper-IgM. J Immunol 1995;154:6624–33.

    PubMed  CAS  Google Scholar 

  16. Durandy A, Schiff C, Bonnefoy JY, et al. Induction by anti-CD40 antibody or soluble CD40 ligand and cytokines of IgG, IgA, and IgE production by B cells from patients with X-linked hyper-IgM syndrome. Eur J Immunol 1993;23:2294–9.

    Article  PubMed  CAS  Google Scholar 

  17. Lee W-I, Torgerson TR, Schumacher MJ, Yel L, Zhu Q, Ochs HD. Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome. Blood 2005;105:1881–90.

    Article  PubMed  CAS  Google Scholar 

  18. Jabara HH, Laouini D, Tsitsikov E, et al. The binding site for TRAF2 and TRAF3 but not TRAF6 is essential for CD40-mediated immunoglobulin class switching. Immunity 2002;17:265–76.

    Article  PubMed  CAS  Google Scholar 

  19. Smahi A, Courtois G, Rabia SH, et al. The NF-kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet 2002;11(20):2371–5.

    Article  PubMed  CAS  Google Scholar 

  20. Durandy A, Revy P, Imai K, Fischer A. Hyper-immunoglobulin M syndromes caused by intrinsic B-lymphocyte defects. Immunol Rev 2005;203:67–79.

    Article  PubMed  CAS  Google Scholar 

  21. Muramatsu M, Sankaranand VS, Anant S, et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 1999;274:18470–6.

    Article  PubMed  CAS  Google Scholar 

  22. Basu U, Chaudhuri J, Alpert C, et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature 2005;438:508–11.

    Article  PubMed  CAS  Google Scholar 

  23. Chaudhuri J, Khuong C, Alt FW. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 2004;430:992–8.

    Article  PubMed  CAS  Google Scholar 

  24. Kavli B, Andersen S, Otterlei M, et al. B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil. J Exp Med 2005;201:2011–21.

    Article  PubMed  CAS  Google Scholar 

  25. Revy P, Muto T, Levy Y, et al. Activation-indiced cytidine deaminase (AID) deficiency causes the autosomal recessive form of hyper-IgM syndrome (HIGM2). Cell 2000;102:565–75.

    Article  PubMed  CAS  Google Scholar 

  26. Quartier P, Bustamante J, Sanal O, et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to activation-induced cytidine deaminase deficiency. Clin Immunol 2004;110:22–9.

    Article  PubMed  CAS  Google Scholar 

  27. Catalan N, Selz F, Imai K, Revy P, Fischer A, Durandy A. The block in immunoglobulin class switch recombination caused by activation-indiced cytidine deaminase deficiency occurs prior to the generation of DNA double strand breaks in switch mu region. J Immunol 2003;171:2504–9.

    PubMed  CAS  Google Scholar 

  28. Ta VT, Nagaoka H, Catalan N, et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat Immunol 2003;4:843–8.

    Article  PubMed  CAS  Google Scholar 

  29. Imai K, Zhu Y, Revy P, et al. Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2. Clin Immunol 2005;115:277–85.

    Article  PubMed  CAS  Google Scholar 

  30. Ito S, Nagaoka H, Shinkura R, et al. Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc Natl Acad Sci USA 2004;101:1975–80.

    Article  PubMed  CAS  Google Scholar 

  31. Imai K, Slupphaug G, Lee WI, et al. Human uracil-DNA-glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 2003;4:1023–8.

    Article  PubMed  CAS  Google Scholar 

  32. Akbari M, Otterlei M, Pea-Diaz J, et al. Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells. Nucleic Acid Res 2004;32:5486–98.

    Article  PubMed  CAS  Google Scholar 

  33. Imai K, Catalan N, Plebani A, et al. Hyper-IgM syndrome type 4 with a B lymphocyte intrinsic selective deficiency in immunoglobulin class switch recombination. J Clin Invest 2003;112:136–42.

    Article  PubMed  CAS  Google Scholar 

  34. Durandy A, Revy P, Fischer A. Autosomal hyper-IgM syndromes caused by an intrinsic B cell defect. In: Ochs HD, Smith CIE, Puck JM, editors. Primary immunodeficiency diseases. A molecular and genetic approach. 2nd ed. New York: Oxford University Press 2007, pp. 269–278.

    Google Scholar 

Download references

Acknowledgments

This work was supported by grant RBNE0189JJ_003 from the Italian Ministry of Education and Research (MIUR-FIRB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi D. Notarangelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Notarangelo, L.D., Lanzi, G., Toniati, P. et al. Immunodeficiencies due to defects of class-switch recombination. Immunol Res 38, 68–77 (2007). https://doi.org/10.1007/s12026-007-0023-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-007-0023-1

Keywords

Navigation