Skip to main content

Chimerism and tetragametic chimerism in humans: implications in autoimmunity, allorecognition and tolerance

Abstract

The presence of cells or tissues from two individuals, chimeras, or the presence of cells and tissues that include the gonads, tetragametic chimerism can be detected by the analysis of cytogenetics and analysis of polymorphic genetic markers, using patterns of pedigree inheritance. These methodologies include determination of sex chromosomes, major histocompatibility complex (MHC) polymorphisms and panels of short tandem repeats (STRs) that include mitochondrial DNA markers. Studies routinely involve cases of temporal chimerism in blood transfusion, or following allotransplantation to measure the outcome of the organ, lymphopoietic tissues or bone marrow grafts. Demonstration of persistent chimerism is usually discovered in cases of inter-sexuality due to fusion of fraternal twins or in cases of fusion of embryos with demonstrable allogeneic monoclonality of blood which, excluded maternity or paternity when blood alone is used as the source of DNA. In single pregnancies it is possible to produce two kinds of microchimerism: feto-maternal and materno-fetal, but in cases of fraternal twin pregnancies it is possible to identify three different kinds which are related to cases of vanishing twins that can be identified during pregnancy by imaging procedures; (1) hematopoietic, (2) gonadal, and (3) freemartins when the twins have different sex and the individual born is a female with either gonadal or both gonadal and hematopoietic tissues. Fraternal twin pregnancies can also produce fusion of embryos. Such cases could be of different sex presenting with inter-sexuality or in same sex twins. One of such cases, the best studied, showed evidence of chimerism and tetragametism. In this regard, the case was studied because of disputed maternity of two of her three children. All tissues studied, except for the blood, demonstrated four genetic components but only two in her blood of four possible showed allogeneic monoclonality consistent with the interpretation that her blood originated from one hematopoietic stem cell. Also, microchimerism, due to traffic of cells via materno-fetal or feto-maternal has been prompted by reports of their potential association with the development of autoimmune disorders including systemic lupus erythematosus (SLE) and systemic sclerosis, and in allotransplantation. In addition, their relevance of chimerism in the positive and negative selection of T cells in the thymus has not been addressed. T lymphocytes play a central role in controlling the acquired immune response and furthermore serve as crucial effector cells through antigen specific cytotoxic activity and the production of soluble mediators. Central tolerance is established by the repertoire selection of immature T lymphocytes in the thymus, avoiding the generation of autoreactive T cells. Expression of chimeric antigens in the thymus could modify the generation of specific T cell clones in chimeric subjects and these mechanisms could be important in the induction of central tolerance against foreign antigens important in allo-transplantation. In this review, we discuss the genetics of chimerism and tetragametism and its potential role in thymic selection and the relevance in allotransplantation and autoimmune disorders.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Lo YM, Patel P, Sampietro M, Gillmer MD, Fleming KA, Wainscoat JS. Detection of single-copy fetal DNA sequence from maternal blood. Lancet 1990;335:1463–4

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Starzl TE, Demetris AJ. Transplantation tolerance, microchimerism, and the two-way paradigm. Theor Med Bioeth 1998;19:441–55

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Sellathamby S, Balasubramanian P, Sivalingam S, Shaji RV, Mathews V, George B, Viswabandya A, Srivastava A, Chandy M. Developing an algorithm of informative markers for evaluation of chimerism after allogeneic bone marrow transplantation. Bone Marrow Transplant 2006;37:751–5

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Beck O, Seidl C, Lehrnbecher T, Kreyenberg H, Schwabe D, Klingebiel T, Seifried E, Bader P, Koehl U. Quantification of chimerism within peripheral blood, bone marrow and purified leukocyte subsets: comparison of singleplex and multiplex PCR amplification of short tandem repeat (STR) loci. Eur J Haematol 2006;76:237–44

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Evans PC, Lambert N, Maloney S, Furst DE, Moore JM, Nelson JL. Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood 1999;93:2033–7

    PubMed  CAS  Google Scholar 

  6. 6.

    Johnson KL, Nelson JL, Furst DE, McSweeney PA, Roberts DJ, Zhen DK, Bianchi DW. Fetal cell microchimerism in tissue from multiple sites in women with systemic sclerosis. Arthritis Rheum 2001;44:1848–54

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Yunis EJ, Hilgard H, Sjodin K, Martinez C, Good RA. Immunological reconstitution of thymectomized mice by injections of isolated thymocytes. Nature 1964;201:784–6

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Hilgard HR, Yunis EJ, Sjodin K, Martinez C, Good RA. Reversal of wasting time in thymectomized mice by the injection of syngeneic spleen or thymus cell suspensions. Nature 1964;202:668–70

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Yunis EJ, Martinez C, Smith J, Good RA. Facilitation of host lymphoid tissue development in neonatally thymectomized mice by injection of allogeneic dispersed thymus cells. Nature 1964;204:850–3

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Yunis EJ, Hilgard HR, Martinez C, Good RA. Studies on immunologic reconstitution of thymectomized mice. J Exp Med 1965;121:607–32

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Chimera on a Bike? Science 2005;308:1864

  12. 12.

    Yu N, Kruskal MS, Yunis JJ, Knoll JHM, Uhl L, Alosco S, Ohashi M, Clavijo O, Husain Z, Yunis EJ, Yunis JJ, Yunis EJ. Disputed maternity leading to identification of tetragametic chimerism. N Engl J Med 2002;346: 1545–52

    PubMed  Article  Google Scholar 

  13. 13.

    Uehara S, Nata M, Nagae M, Sagisaka K, Okamura K, Yajima A. Molecular biologic analyses of tetragametic chimerism in a true hermaphrodite with 46,XX/46,XY. Fertil Steril 1995;63:189–92

    PubMed  CAS  Google Scholar 

  14. 14.

    Strain L, Dean JCS, Hamilton MPR, Bonthron DT. A true hermaphrodite chimera resulting from embryo amalgamation after in␣vitro fertilization. N Eng J Med 1998;338:166–9

    CAS  Article  Google Scholar 

  15. 15.

    Falik-Borenstein TC, Korenberg JR, Schreck RR. Confined placental chimerism: prenatal and postnatal cytogenetic and molecular analysis, and pregnancy outcome. Am J Med Genet 1994;50:51–6

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Reed AM, McNallan K, Wettsein P, Vehe R, Ober C. Does HLA-dependent chimerism underlie the pathogenesis of juvenile dermatomyositis. J Immunol 2004;172:5041–6

    PubMed  CAS  Google Scholar 

  17. 17.

    Lambert NC, Evans PC, Hashizumi TL, Maloney S, Gooley T, Furst, Nelson JL. Cutting edge: persistent fetal microchimerism in T lymphocytes is associated with HLA-DQA1*0501: implications in autoimmunity. J Immunol 2000;164:5545

  18. 18.

    Maloney S, Smith A, Furst DE, Myerson D, Rupert K, Evans PC, Nelson JL. Microchimerism of maternal origin persists into adult life. J Clin Invest 1999;104:41–7

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Stewart CA, Horton R, Allcock RJ, Ashurst JL, Atrazhev AM, Coggill P, Dunham I, Forbes S, Halls K, Howson JM, Humphray SJ, Hunt S, Mungall AJ, Osoegawa K, Palmer S, Roberts AN, Rogers J, Sims S, Wang Y, Wilming LG, Elliott JF, de Jong PJ, Sawcer S, Todd JA, Trowsdale J, Beck S. Complete MHC haplotype sequencing for common disease gene mapping. Genome Res 2004;14:1176–87

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Alper CA, Larsen CE, Dubey DP, Awdeh ZL, Fici DA, Yunis EJ. The haplotype structure of the human major histocompatibility complex. Hum Immunol 2006;67:73–84

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Yunis EJ, Larsen CE, Fernandez-Vina M, Awdeh ZL, Romero T, Hansen JA, Alper CA. Inheritable variable sizes of DNA stretches in the human MHC: conserved extended haplotypes and their fragments or blocks. Tissue Antigens 2003;62:1–20

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Larsen CE, Alper CA. The genetics of HLA-associated disease. Curr Opin Immunol 2004;16:660–7

    CAS  Google Scholar 

  23. 23.

    Thorsby E, Pfeffer P, Leivestad T. Role of HLA molecules in the induction of alloimmune responses: clinical significance in the cyclosporine era. Transplant Proc 2004;36:16S–21S

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Edwards A, Civitello A, Hammond HA, Caskey CT. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 1991;49:746–56

    PubMed  CAS  Google Scholar 

  25. 25.

    Gill P. DNA as evidence – the technology of identification. N Engl J Med 2005;352:2669–71

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Khan F, Agarwal A, Agarwal S. Significance of chimerism in hematopietic stem cell transplantation: new variations on an old theme. Bone Marrow Transplant 2004;34:1–12

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Zuniga J, Ilzarbe M, Acunha-Alonzo V, Rosetti F, Herbert Z, Romero V, Almeciga I, Clavijo O, Stern JN, Granados J, Fridkis-Hareli M, Morrison P, Azocar J, Yunis EJ. Allele frequencies for 15 autosomal STR loci and admixture estimates in Puerto Rican Americans. Forensic Sci Int 2006;164: 266–70

    Google Scholar 

  28. 28.

    Yang BZ, Zhao H, Kranzler HR, Gelernter J. Practical population group assignment with selected informative markers: characteristics and properties of Bayesian clustering via STRUCTURE. Genet Epidemiol 2005;28:302–12

    PubMed  Article  Google Scholar 

  29. 29.

    Guettier C, Sebagh M, Buard J, Feneux D, Ortin-Serrano M, Gigou M, Tricottet V, Reynes M, Samuel D, Feray C. Male cell microchimerism in normal and diseased female livers from fetal life to adulthood. Hepatology 2005;42:35–43

    PubMed  Article  Google Scholar 

  30. 30.

    Buno I, Nava P, Simon A, Gonzalez-Rivera M, Jimenez JL, Balsalobre P, Serrano D, Carrion R, Gomez-Pineda A, Diez-Martin JL. A comparison of fluorescent in␣situ hybridization and multiplex short tandem repeat polymerase chain reaction for quantifying chimerism after stem cell transplantation. Haematologica 2005;90:1373–9

    PubMed  CAS  Google Scholar 

  31. 31.

    Socie G, Gluckman E, Carosella E, Brossard Y, Lafon C, Brison O. Search for maternal cells in human umbilical cord blood by polymerase chain reaction amplification of two minisatellite sequences. Blood 1994;83:340–4

    PubMed  CAS  Google Scholar 

  32. 32.

    Hall JM, Lingenfelter P, Adams SL, Lasser D, Hansen SA, Bean MA. Detection of maternal cells in human umbilical cord blood using fluorescence in␣situ hybridization. Blood 1995;86:2829–32

    PubMed  CAS  Google Scholar 

  33. 33.

    Lo ESF, Lo YMD, Hjelm NM, Thilaganathan B. Transfer of nucleated maternal cells into fetal circulation during the second trimester of pregnancy. Br J Haematol 1998;100:605–6

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Liegeois A, Gaillard MC, Ouvre E, Lewin D. Microchimerism in pregnant mice. Transplant Proc 1981;13:1250–2

    PubMed  CAS  Google Scholar 

  35. 35.

    Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 1996;93:705–8

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Artlett CM, Smith JB, Jimenez SA. Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med 1998;338:1186–91

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Fanning PA, Jonsson JR, Clouston AD, Edwards-Smith C, Balderson GA, Macdonald GA, Crawford DH, Kerlin P, Powell LW, Powell EE. Detection of male DNA in the liver of female patients with primary biliary cirrhosis. J Hepatol 2000;33:690–5

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Klintschar M, Schwaiger P, Mannweiler S, Regauer S, Kleiber M. Evidence of fetal microchimerism in Hashimoto’s thyroiditis. J Clin Endocrinol Metab 2001;86:2494–8

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Toda I, Kuwana M, Tsubota K, Kawakami Y. Lack of evidence for an increased microchimerism in the circulation of patients with Sjogren’s syndrome. Ann Rheum Dis 2001;60:248–53

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Hovinga IC, Koopmans M, Baelde HJ, Wal AM, Sijpkens YW, Heer ED, Bruijn JA, Bajema IM. Chimerism occurs twice as often in lupus nephritis as in normal kidneys. Arthritis Rheum 2006;54:2944–50

    Article  Google Scholar 

  41. 41.

    Williams CA, Wallace MR, Drury KC, Kipersztok S, Edwards RK, Williams RS, Haller MJ, Schatz DA, Silverstein JH, Gray BA, Zori RT. Blood lymphocyte chimerism associated with IVF and monochorionic dizygous twinning: case report. Human Reprod 2004;19:2816–21

    CAS  Article  Google Scholar 

  42. 42.

    Falik-Borenstein TC, Korenberg JR, Schreck RR. Confined placental chimerism: prenatal and postnatal cytogenetic and molecular analysis, and pregnancy outcome. Am J Med Genet 1994;50:51–6

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Landy HJ, Keith LG. The vanishing twin: a review. Hum Reprod Update 1998;4:177–83

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Padula AM. The freemartin syndrome: an update. Anim Reprod Sci 2005;87:93–109

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Lillie FR. The freemartin: a study of the action of sex hormones in the foetal life of cattle. J Exp Zool 1917;23:371

    Article  Google Scholar 

  46. 46.

    Dunn HO, McEntee K, Hall CE, Johnson RH, Stone WH. Cytogenetic and reproductive studies of bulls born co-twin with freemartins. Reprod Fertil 1979;24:91–7

    Article  Google Scholar 

  47. 47.

    David JSE, Long SE, Eddy R. The incidence of freemartins in heifer calves purchased from markets. Vet Rec 1976;98:417–8

    PubMed  CAS  Google Scholar 

  48. 48.

    Verkerckmoes S, Van Soom, De Puw I, Van Crutchten S, de Kruif A. Freemartins in a sheep. Vlaams Diergeneeskindig Tijdschrift 2002;71:211–5

  49. 49.

    Stromont C, Weir WC, Lane IL. Erythrocyte mosaicism in a pair of sheep twins. Science 1953;118:695–6

    Article  Google Scholar 

  50. 50.

    Kennedy PC. The female genital system. In: Jubb K, Kennedy PC, Palmer N, editors. Pathology of domestic animals. New York: Academic; 1985. p. 409–59

    Google Scholar 

  51. 51.

    Tucker EM, Dain AR, Moor RM. Sex chromosome chimaerism and the transmission of blood group genes by tetraparental rams. J Reprod Med 1978;54:77–83

    CAS  Article  Google Scholar 

  52. 52.

    Sumantri C, Boediono A, Ooe M, Saha S, Suzuki T. Fertility of sperm from a tetraparental chimeric bull. Anim Reprod Sci 1997;46:35–45

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Miyano T, Kobayashi H, Shimomura H, Yamataka A, Tomita T. Magnetic resonance imaging for localizing the nonpalpable undescended testis. J Pediatr Surg 1991;26:607–9

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Bomalaski MD. A practical approach to intersex. Urologic nursing 2005;25:1–23

    Google Scholar 

  55. 55.

    Lage JM, Vanmarter LJ, Mikhail E. Vascular anastomoses in fused, dichorionic twin placentas resulting in twin transfusion syndrome. Placenta 1989;10:55–9

    PubMed  CAS  Google Scholar 

  56. 56.

    Taylor MJ, Farquharson D, Cox PM, Fisk NM. Identification of arterio-venous anastomoses in␣vivo in monochorionic twin pregnancies: preliminary report. Ultrasound Obstet Gynecol 2000;16:218–22

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Naito M, Sano A, Harumi T, Matsubara Y, Kuwana T. Migration of primordial germ cells isolated from embryonic blood in to the gonads after transfer to stage X blastoderms and detection of germline chimaerism by PCR. Br Poult Sci 2004;45:762–8

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Mintz B. Gene control of mammalian pigmentary differentiation. I. Clonal origin of melanocytes. Proc Nat Ac Sci 1967;58:344–51

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    Mintz B, Palm J. Gene control of hematopoiesis. I. Erythrocyte mosaicism and permanent immunological tolerance in allophonic mice. J Exp Med 1969;129:1013–27

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Tam PPL, Rossant J. Mouse embryonic chimeras: tools for studying mammalian development. Development 2003;130:6155–63

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Bordenave GR, Babinet C. Tetraparental rabbits chimeric for their lymphoid system. I. Allotype expression. Mol Immunol 1984;21:353–61

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    Schoenle E, Schmid W, Schinzel A, et al. 46,XX/46,XY chimerism in a phenotypically normal man. Hum Genet 1983;64:86–9

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    Watkins WM, Yates AD, Greenwell P, et al. A human dispermic chimaera first suspected from analyses of the blood group gene-specified glycosyltransferases. J Immunogenet 1981;8:113–28

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    Strain L, Warner JP, Johnston T, Bonthron DT. A human parthenogenetic chimaera. Nat Genet 1995;11:164–9

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Green AJ, Barton DE, Jenks P, Pearson J, Yates JRW. Chimaerism shown by cytogenetics and DNA polymorphism analysis. J Med Genet 1994;31:816–7

    PubMed  CAS  Google Scholar 

  66. 66.

    Verp MS, Harrison HH, Ober C, et al. Chimerism as the etiology of a 46,XX/46,XY fertile true hermaphrodite. Fertil Steril 1992; 57:346–9

    PubMed  CAS  Google Scholar 

  67. 67.

    Repas-Humpe LM, Humpe A, Lynen R, et al. A dispermic chimerism in a 2-year-old Caucasian boy. Ann Hematol 1999;78:431–4

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Miura K, Niikawa N. Do monochorionic dizygotic twins increase after pregnancy by assisted reproductive technology? J Hum Genet 2005;50:1–6

    PubMed  Article  Google Scholar 

  69. 69.

    Zeilmaker GH, Alberda AT, van Gent I. Fertilization and cleavage of oocytes from a binovular human ovarian follicle: a possible cause of dizygotic twinning and chimerism. Fertil Steril 1983;40:841–3

    PubMed  CAS  Google Scholar 

  70. 70.

    Ben-Rafael Z, Mastroianni L Jr, Kopf GS. In vitro fertilization and cleavage of a single egg from a binovular follicle containing two individual eggs surrounded by a single zona pellucida. Fertil Steril 1987;47:707–9

    PubMed  CAS  Google Scholar 

  71. 71.

    Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001;105:369–77

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    Harel M, Shoenfeld Y. Predicting and preventing autoimmunity, myth or reality? Ann N Y Acad Sci 2006;1069:322–45

    PubMed  Article  Google Scholar 

  73. 73.

    Rodriguez-Reyna TS, Alarcon-Segovia D. Overlap syndromes in the context of shared autoimmunity. Autoimmunity 2005;38:219–23

    PubMed  Article  Google Scholar 

  74. 74.

    Alarcon-Riquelme ME. Functional genomics in the study of autoimmune diseases. Autoimmun Rev 2003;2:177–80

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Moudgil KD, Sercarz EE. Understanding crypticity is the key to revealing the pathogenesis of autoimmunity. Trends Immunol 2005;26:355–9

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Moudgil KD, Sercarz EE. The self-directed T cell repertoire: its creation and activation. Rev Immunogenet 2000;2:26–37

    PubMed  CAS  Google Scholar 

  77. 77.

    von Boehmer H, Aifantis I, Gounari F, Azogui O, Haughn L, Apostolou I, Jaeckel E, Grassi F, Klein L. Thymic selection revisited: how essential is it? Immunol Rev 2003;191:62–78

    Article  Google Scholar 

  78. 78.

    Maggi E, Cosmi L, Liotta F, Romagnani P, Romagnani S, Annunziato F. Thymic regulatory T cells. Autoimmun Rev 2005;4:579–86

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Raman K, Mohan C. Genetic underpinnings of autoimmunity – lessons from studies in arthritis, diabetes, lupus and multiple sclerosis. Curr Opin Immunol 2003;15:651–9

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Ohashi PS. Negative selection and autoimmunity. Curr Opin Immunol 2003;15:668–76

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Pasare C, Medzhitov R. Toll-like receptors: balancing host resistance with immune tolerance. Curr Opin Immunol 2003;15:677–82

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Hammond KJL, Kronenberg M. Natural killer T cells: natural or unnatural regulators of autoimmunity? Curr Opin Immunol 2003;15:683–9

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Gavin M, Rudensky A. Control of immune homeostasis by naturally arising regulatory CD4+ T cells. Curr Opin Immunol 2003;15:690–3

    PubMed  CAS  Article  Google Scholar 

  84. 84.

    Yadav D, Sarvetnick N. Cytokines and autoimmunity: redundancy defines their complex nature. Curr Opin Immunol 2003;15:697–703

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol 2006;24:571–606

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Adams KM, Nelson JL. Microchimerism: an investigative frontier in autoimmunity and transplantation. JAMA 2004;291:1127–31

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Bianchi DW. Fetomaternal cell trafficking: a new cause of disease? Am J Med Genet 2000;91:22–8

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Artlett CM, Welsh KI, Black CM, Jimenez SA. Fetal-maternal HLA compatibility confers susceptibility to systemic sclerosis. Immunogenetics 1997;47:17–22

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    Nelson JL. Microchimerism in human health and disease. Autoimmunity 2003;36:5–9

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Guettier C, Sebagh M, Buard J, Feneux D, Ortin-Serrano M, Gigou M, Tricottet V, Reynes M, Samuel D, Feray C. Male cell microchimerism in normal and diseased female livers from fetal life to adulthood. Hepatology 2005;42:35–43

    PubMed  Article  Google Scholar 

  91. 91.

    Page DM, Alexander J, Snoke K, Apella E, Sette A, Hedrick SM, Grey HM. Negative selection of CD4+CD8+ thymocytes by T-cell receptor peptide antagonists. Proc Natl Acad Sci USA 1994;91:4057–61

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    Spain LM, Jorgensen JL, Davis MM, Berg LJ. A peptide antigen antagonist prevents the differentiation of T cell receptor transgenic thymocytes. J Immunol 1994; 152:1709–17

    PubMed  CAS  Google Scholar 

  93. 93.

    Ghendler Y, Teng MK, Liu JH, Witte T, Liu J, Kim KS, Kern P, Chang HC, Wang JH, Reinherz EL. Differential thymic selection outcomes stimulated by focal structural alteration in peptide/major histocompatibility complex ligands. Proc Natl Acad Sci USA 1998;95:10061–6

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Pircher HP, Burki R, Lang R, Hengartner H, Zinkernagel RM. Tolerance induction in double-specific T cell receptor transgenic mice varies with antigen. Nature 1989;342:559–61

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Puglielli MT, Zajac AJ, van der Most RG, Dzuris JL, Sette A, Altman JD, Ahmed R. In vivo selection of a lymphocytic choriomeningitis virus variant that affects recognition of the gp33–41 epitope by Hb but not H-2Kb. J Virol 2001;75:5099–107

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    Ashton-Rickardt PG, Bandeira A, Delaney JR, Van Kaer L, Pircher HP, Zinkernagel RM, Tonegawa S. Evidence for a differential avidity model of T cell selection in the thymus. Cell 1994;76:651–63

    PubMed  CAS  Article  Google Scholar 

  97. 97.

    Hahn M, Nicholson MJ, Pyrdol J, Wucherpfennig KW. Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat Immunol 2005;5:490–6

    Article  CAS  Google Scholar 

  98. 98.

    Kappler J, Roehm N, Marrack P. T cell tolerance by clonal elimination in the thymus. Cell 1987;49:273–80

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Amsen D, Kruisbeek AM. Thymocyte selection: not by TCR alone. Immunol Rev 1998;165:209–29

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Punt JA, Osborne BA, Takahama Y, Sharrow SO, Singer A. Negative selection of CD4CCD8C thymocytes by T cell receptor-induced apoptosis requires a costimulatory signal that can be provided by CD28. J Exp Med 1994;179:709–13

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Mariathasan S, Zakarian A, Bouchard D, Michie AM, Zuniga-Pflucker JC, Ohashi PS. Duration and strength of extracellular signal-regulated kinase signals are altered during positive versus negative thymocyte selection. J Immunol 2001;167:4966–73

    PubMed  CAS  Google Scholar 

  102. 102.

    Kuo CT, Leiden JM. Transcriptional regulation of T lymphocyte development and function. Annu Rev Immunol 1999;17:149–87

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    Sprent J. Proving negative selection in the thymus. J Immunol 2005;174:3841–2

    PubMed  CAS  Google Scholar 

  104. 104.

    Rizzi M, Ferrera F, Filaci G, Indiveri F. Disruption of immunological tolerance: role of AIRE gene in autoimmunity. Autoimmun Rev 2006;5:145–7

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Lanzavecchia A, Sallusto F. The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr Opin Immunol 2001;13:291–8

    PubMed  CAS  Article  Google Scholar 

  106. 106.

    Abbas AK, Lohr J, Knoechel B, Nagabhushanam V. T cell tolerance and autoimmunity. Autoimmun Rev 2004;3:471–5

    PubMed  CAS  Article  Google Scholar 

  107. 107.

    Zouali M. Immunological tolerance: mechanisms. 2001 Encyclopedia of life Sciences. Nature Publishing Group:1–9

  108. 108.

    van Duivenvoorde LM, van Mierlo GJ, Boonman ZF, Toes RE. Dendritic cells: Vehicles for tolerance induction and prevention of autoimmune diseases. Immunobiology 2006;211:627–32

    Google Scholar 

  109. 109.

    Alexander SI, Younes SB, Yunis JJ, Zurakowski D, Mirza N, Dubey D, Drew MP, Harmon WE, Yunis EJ. Cell-mediated cytotoxicity: a predictor of chronic rejection in pediatric HLA haploidentical renal transplants. Transplantation 1997;3:1756–61

    Article  Google Scholar 

  110. 110.

    Wegmann TG, Hellstrom I, Hellstrom KE. Immunological tolerance: “Forbidden Clones” allowed in tetraparental mice. Proc Nat Acad Sci 1971;68:1644–7

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Lubaroff DM, Silvers WK. Importance of chimerism in maintaining tolerance of skin allografts in mice. J Immunol 1973;111:65–71

    PubMed  CAS  Google Scholar 

  112. 112.

    Millan MT, Shizuru JA, Hoffmann P, Dejbakhsh-Jones S, Scandling JD, Grumet FC, Tan JC, Salvatierra O, Hoppe RT, Strober S. Mixed chimerism and immunosuppressive drug withdrawal after␣HLA mismatched kidney and hematopoietic progenitor transplantation. Transplantation 2002;73:1386–91

    Google Scholar 

  113. 113.

    Monaco AP. Tolerance and chimerism: separate and unequal concepts. Transplantation 2002;73:1386–91

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Starzl TE. Chimerism and tolerance in transplantation. Proc Natl Acad Sci USA 2004;101:14607–14

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    Starzl TE, Demetris AJ, Murase N, Ildstad S, Ricordi C, Trucco M. Cell migration, chimerism, and graft acceptance. Lancet 1992; 339:1579–82

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Starzl TE, Demetris AJ, Trucco M, Murase N, Ricordi C, Ildstad S, Ramos H, Todo S, Tzakis A, Fung JJ, et al. Cell migration and chimerism after whole-organ transplantation: the basis of graft acceptance. Hepatology 1993;17:1127–52

    PubMed  CAS  Article  Google Scholar 

  117. 117.

    Nasr IW, Wang Y, Gao G, Deng S, Diggs L, Rothstein M, Tellides G, Lakkis FG, Dai Z. Testicular immune privilege promotes transplantation tolerance by altering the balance between memory and regulatory T cells. J Immunol 2005;174:6161–8

    PubMed  CAS  Google Scholar 

  118. 118.

    Bonilla WV, Geuking MB, Aichele P, Ludewig B, Hengartner H, Zinkernagel RM. Microchimerism maintains deletion of the donor cell-specific CD8+ T cell repertoire. J Clin Invest 2006;116:156–62

    PubMed  CAS  Article  Google Scholar 

  119. 119.

    Claas F, Gijbels Y, van der velden-de Munck J, van Rood J. Induction of B cell unresponsiveness to noninherited maternal HLA antigens during fetal life. Science 1988 241:1815–7

    PubMed  CAS  Article  Google Scholar 

  120. 120.

    Azar MM, Gatti RA, Yunis EJ, Swanson J, Good RA. Survival of Group A erythrocytes following bone marrow transplantation for reconstitution of lymphopenic hypogammaglobulinemia. Blood 1971;38:60–65

    PubMed  CAS  Google Scholar 

  121. 121.

    Walker LS, Abbas AK. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2002;2:11–9

    PubMed  CAS  Article  Google Scholar 

  122. 122.

    Redmond WL, Sherman LA. Peripheral tolerance of CD8 T lymphocytes. Immunity 2005;22:275–84

    PubMed  CAS  Article  Google Scholar 

  123. 123.

    Burnet FM. The clonal selection theory of acquired immunity. New York, USA: Cambridge University Press; 1959:209

  124. 124.

    Matsuoka K, Ichinohe T, Hashimoto D, Asakura S, Tanimoto M, Teshima T. Fetal tolerance to maternal antigens improves the outcome of allogeneic bone marrow transplantation by CD4+ CD25+ T cell-dependent mechanism. Blood 2006; 107:404–9

    PubMed  CAS  Article  Google Scholar 

  125. 125.

    Van den Boogaardt DE, van Rood JJ, Roelen DL, Class FH. The influence of inherited and noninherited parental antigens on outcome after transplantation. Transpl Int 2006;19:360–71

    PubMed  Article  CAS  Google Scholar 

  126. 126.

    Ichinohe T, Uchiyama T, Shimazaki C, Matsuo K, Tamaki S, Hino M. Feasibility of HLA-haploidentical hematopoietic stem cell transplantation between noninherited maternal antigen (NIMA)-mismatched family members linked with long-term fetomaternal michromerism. Blood 2004;104:3821–8

    PubMed  CAS  Article  Google Scholar 

  127. 127.

    Lambert NC, Pang JM, Yan Z, Erickson TD, Stevens AM, Furst DE, Nelson JL. Male microchimerism in women with systemic sclerosis and healthy women who have never given birth to a son. Ann Rheum Dis 2005;64:845–8

    PubMed  CAS  Article  Google Scholar 

  128. 128.

    Stevens AM, Hermes HM, Lambert NC, Nelson JL, Meroni PL, Cimaz R. Maternal and sibling microchimerism in twins and triplets discordant for neonatal lupus syndrome-congenital heart block. Rheumatology (Oxford) 2005;44:187–91

    CAS  Article  Google Scholar 

  129. 129.

    Weger W, Bauer M, Odell E, Pertl B, Cerroni L, Kerl H, Jakse N, Pertl C. Role of microchimerism in the pathogenesis of oral lichen planus. Exp Dermatol 2006;15:12512–9

    Article  Google Scholar 

  130. 130.

    Klintschar M, Immel UD, Kehlen A, Schwaiger P, Mustafa T, Mannweiler S, Regauer S, Kleiber M, Hoang-Vu C. Fetal microchimerism in Hashimoto’s thyroiditis: a quantitative approach. Eur J Endocrinol 2006;154:237–41

    PubMed  CAS  Article  Google Scholar 

  131. 131.

    Yan Z, Lambert NC, Ostensen M, Adams KM, Guthrie KA, Nelson JL. Prospective study of fetal DNA in serum and disease activity during pregnancy in women with inflammatory arthritis. Arthritis Rheum 2006;54:2069–73

    PubMed  CAS  Article  Google Scholar 

  132. 132.

    Lambert NC, Erickson TD, Yan Z, Pang JM, Guthrie KA, Furst DE, Nelson JL. Quantification of maternal microchimerism by HLA-specific real-time polymerase chain reaction: studies of healthy women and women with scleroderma. Arthritis Rheum 2004;50:906–14

    PubMed  CAS  Article  Google Scholar 

  133. 133.

    Lambert NC, Lo YM, Erickson TD, Tylee TS, Guthrie KA, Furst DE, Nelson JL. Male microchimerism in healthy women and women with scleroderma: cells or circulating DNA? A quantitative answer. Blood 2002;100:2845–51

    PubMed  CAS  Article  Google Scholar 

  134. 134.

    Ohtsuka T, Miyamoto Y, Yamakage A, Yamazaki S. Quantitative analysis of microchimerism in systemic sclerosis skin tissue. Arch Dermatol Res 2001;293:387–91

    PubMed  CAS  Article  Google Scholar 

  135. 135.

    Ando T, Imaizumi M, Graves PN, Unger P, Davies TF. Intrathyroidal fetal microchimerism in Graves’ disease. J Clin Endocrinol Metab 2002;87:3315–20

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edmond J. Yunis.

Additional information

This review is dedicated to the memory of Robert A. Good, MD, PhD, an outstanding physician and scientist, one discoverer of the functions of the Thymus in immunobiology and the pioneer of human bone marrow allotransplantation.

Presented at the First Robert A Good Society Symposium, St. Petersburg, FL 2006.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yunis, E.J., Zuniga, J., Romero, V. et al. Chimerism and tetragametic chimerism in humans: implications in autoimmunity, allorecognition and tolerance. Immunol Res 38, 213–236 (2007). https://doi.org/10.1007/s12026-007-0013-3

Download citation

Keywords

  • Chimerism
  • Autoimmunity
  • Allotransplantation
  • Allorecognition
  • Thymic selection
  • Tolerance