Skip to main content

Advertisement

Log in

Gunshot trauma in human long bones: towards practical diagnostic guidance for forensic anthropologists

  • Review
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

A Publisher Correction to this article was published on 07 June 2022

This article has been updated

Abstract

In contrast to cranial gunshot trauma, diagnosis and interpretation of gunshot trauma to long bones remains difficult and controversial. The aim of this study is to review the published literature on fracture patterns resulting from gunshot trauma in human long bones, and to use the described characteristics to provide practical guidance for the forensic anthropologist. In order to achieve this, medical and forensic publications on this topic were reviewed. Several types of fractures, such as linear, oblique, comminuted and butterfly fractures, have been observed in either the shaft or the ends of long bones. Indirect fractures that are not caused by bullets striking bone directly but by bullet-induced forces to the surrounding soft tissue have been found as well. Some of these fractures are related to a specific context or mechanism which might help in the forensic reconstruction of events. It is recommended that future research should focus on available medical data to provide more detailed descriptions on fracture patterns for forensic purposes. Experimentation with bone surrogates and computer modelling might also provide better and more realistic reconstructions of gunshot trauma in the future and provide valuable insights for its diagnosis and interpretation in forensic anthropology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Change history

References

  1. Berryman HE. A systematic approach to the interpretation of gunshot wound trauma to the cranium. Forensic Sci Int. 2019;301:306–17. https://doi.org/10.1016/j.forsciint.2019.05.019.

    Article  PubMed  Google Scholar 

  2. Tersigni-Tarrant MTA, Shirley NR. Forensic anthropology: an introduction. CRC Press; 2012.

  3. Woźniak KJ, Moskała M, Grabherr S. Gunshot trauma. In: Grabherr S, Grimm JM, Heinemann A, editors. Atlas of postmortem angiography. Springer; 2016. p. 453–90.

    Chapter  Google Scholar 

  4. Hart GO. Fracture pattern interpretation in the skull: differentiating blunt force from ballistics trauma using concentric fractures. J Forensic Sci. 2005;50(6):1–6.

    Article  Google Scholar 

  5. Symes SA, l’Abbé, Ericka N, Chapman EN, Wolff I, Dirkmaat, Dennis C. Interpreting traumatic injury to bone in medicolegal investigations. In: Dirkmaat, Dennis C, editor. A companion to forensic anthropology. Blackwell Publishing; 2012. pp. 340–88.

  6. Witchi TH, Omer GE. The treatment of open tibial shaft fractures from Vietnam War. J Trauma. 1970;10(2):105–11.

    Article  Google Scholar 

  7. Ryan JR, Hensel RT, Salciccioli GG, Pedersen HE. Fractures of the femur secondary to low-velocity gunshot wounds. J Trauma. 1981;21(2):160–2.

    Article  CAS  Google Scholar 

  8. Smith HW, Wheatley KK. Biomechanics of femur fractures secondary to gunshot wounds. J Trauma. 1984;24(11):970–7.

    Article  CAS  Google Scholar 

  9. Leffers D, Chandler RW. Tibial fractures associated with civilian gunshot injuries. J Trauma. 1985;25(11):1059–64.

    CAS  PubMed  Google Scholar 

  10. Rose SC, Keith Fujisaki C, Moore EE. Incomplete fractures associated with penetrating trauma: etiology, appearance, and natural history. J Trauma. 1988;28(1):106–9.

    Article  CAS  Google Scholar 

  11. Tornetta P, Tiburzi D. Anterograde interlocked nailing of distal femoral fractures after gunshot wounds. J OrthopTrauma. 1994;8(3):220–7.

    Google Scholar 

  12. Rodrigues RL, Sammer DM, Chung KC. Treatment of complex below-the-elbow gunshot wounds. Ann Plast Surg. 2006;56(2):122–7.

    Article  CAS  Google Scholar 

  13. Dougherty PJ, Vaidya R, Silverton CraigD, Bartlett C, Najibi S. Joint and long-bone gunshot injuries. J Bone Joint Surg Am. 2009;91(4):980–97.

  14. Huelke DF, Buege LJ, Harger JH. Bone fractures produced by high velocity impacts. Am J Anat. 1967;120(1):123–31.

    Article  Google Scholar 

  15. Huelke DF, Harger JH, Buege LJ, Dingman HG, Harger DR. An experimental study in bio-ballistics. Femoral fractures produced by projectiles. J Biomechanics. 1968;1(2):97–105.

  16. Berryman HE, Gunther WM. Keyhole defect production in tubular bone. J For Sci. 2000;45(2):483–7.

    CAS  Google Scholar 

  17. Smith OC, Pope ElayneJ, Symes SA. Look until you see: identification of trauma in skeletal material. In: Steadman DW, editor. Hard evidence: case studies in forensic anthropology. 2nd ed. Routledge; 2003. pp. 337–63.

  18. Galloway A, Zephro L. Forensic medicine of the lower extremity. Humana Press; 2005.

  19. Kimmerle EH, Baraybar JP. Skeletal trauma: identification of injuries resulting from human right abuse and armed conflict. Oxfordshire, UK: Taylor and Francis; 2008.

    Book  Google Scholar 

  20. Kieser DC, Carr DJ, Leclair SCJ, Horsfall I, Theis JC, Swain MV, et al. Gunshot induced indirect femoral fracture: mechanism of injury and fracture morphology. J R Army Med Corps. 2013;159(4):294–9. https://doi.org/10.1136/jramc-2013-000075

  21. Kieser DC, Riddell R, Kieser JA, Theis J, Swain MV. Bone micro-fracture observations from direct impact of slow velocity projectiles. J Arch Mil Med. 2014;2(1):1–6. https://doi.org/10.5812/jamm.15614.

    Article  Google Scholar 

  22. Bir C, Andrecovich C, DeMaio M, Dougherty PJ. Evaluation of bone surrogates for indirect and direct ballistic fractures. Forensic Sci Int. 2016;261(1):7. https://doi.org/10.1016/j.forsciint.2016.01.023.

    Article  CAS  Google Scholar 

  23. Martrille L, Symes SA. Interpretation of long bones ballistic trauma. Forensic Sci Int. 2019;302:1–10. https://doi.org/10.1016/j.forsciint.2019.109890.

    Article  Google Scholar 

  24. Christensen A, Smith M, Gleiber D, Cunningham D, Wescott D. The use of X-ray computed tomography technologies in forensic anthropology. Forensic Anthropol. 2018;1(2):124–40.

    Article  Google Scholar 

  25. Burke MP. Forensic pathology of fractures and mechanisms of injury—postmortem CT scanning. CRC Press; 2012.

  26. Thali MJ, Yen K, Vock P, Ozdoba C, Kneubuehl BP, Sonnenschein M, et al. Image-guided virtual autopsy findings of gunshot victims performed with multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) and subsequent correlation between radiology and autopsy findings. Forensic Sci Int. 2003;138(1–3):8–16.

    Article  Google Scholar 

  27. Moraitis K, Spiliopoulou C. Identification and differential diagnosis of perimortem blunt force trauma in tubular long bones. Forensic Sci Med Pathol. 2006;2(4):221–9.

    Article  Google Scholar 

  28. Kieser DC, Kanade S, Waddell NJ, Kieser JA, Theis JC, Swain M v. The deer femur—a morphological and biomechanical animal model of the human femur. Biomed Mater and Eng. 2014;24(4):1693–703.

  29. Kneubuehl BP, Thali MJ. The evaluation of a synthetic long bone structure as a substitute for human tissue in gunshot experiments. Forensic Sci Int. 2003;138(1–3):44–9.

    Article  CAS  Google Scholar 

  30. Henwood BJ, Appleby-Thomas G. The suitability of Synbone® as a tissue analogue in ballistic impacts. J Mater Sci. 2020;55(7):3022–33. https://doi.org/10.1007/s10853-019-04231-y.

    Article  CAS  Google Scholar 

  31. Jin Y, Mai R, Wu C, Han R, Li B. Comparison of ballistic impact effects between biological tissue and gelatin. J Mech Behav Biomed Mater. 2018;78:292–7. https://doi.org/10.1016/j.jmbbm.2017.11.033.

    Article  CAS  PubMed  Google Scholar 

  32. Ragsdale BD, Josselson A. Experimental gunshot fractures. J Trauma. 1988;28(1):109–15.

    Article  Google Scholar 

  33. Jussila J, Leppäniemi A, Paronen M, Kulomäki E. Ballistic skin simulant. Forensic Sci Int. 2005;150(1):63–71.

    Article  Google Scholar 

  34. Bir CA, Resslar M, Stewart S. Skin penetration surrogate for the evaluation of less lethal kinetic energy munitions. Forensic Sci Int. 2012;220(1–3):126–9. https://doi.org/10.1016/j.forsciint.2012.02.008.

    Article  CAS  PubMed  Google Scholar 

  35. Müller ME, Nazarian S, Koch P, Schatzker J. The comprehensive classification of fractures of long bones. Springer-Verlag; 1990.

  36. Reber SL, Simmons T. Interpreting injury mechanisms of blunt force trauma from butterfly fracture formation. J Forensic Sci. 2015;60(6):1401–11.

    Article  Google Scholar 

  37. Dixon DS. Keyhole lesions in gunshot wounds of the skull and direction of fire. J Forensic Sci. 1982;27(3):555–65.

    Article  CAS  Google Scholar 

  38. Ryan RS, Munk PL. Radiology for the surgeon musculoskeletal case 32. Can J Surg. 2004;47(3):197–8.

  39. Dougherty PJ, Sherman D, Dau N, Bir C. Ballistic fractures: indirect fracture to bone. J Trauma. 2011;71(5):1381–4.

    PubMed  Google Scholar 

  40. Zhang X, Xu C, Wen Y, Luo S. The experimental and numerical study of indirect effect of a rifle bullet on the bone. Forensic Sci Int. 2015;257:473–80.

    Article  Google Scholar 

  41. Cooper GJ, Ryan JM. Interaction of penetrating missiles with tissues: some common misapprehensions and implications for wound management. Br J Surg. 1990;77(6):606–10.

    Article  CAS  Google Scholar 

  42. Li M, Ma YY, Fu RX, Feng TS. The characteristics of the pressure waves generated in the soft target by impact and its contribution to indirect bone fractures. J Trauma. 1988;28(S):104–9.

  43. Sherman DC, Dougherty P, Bir CA. Indirect fractures to bones by ballistic injury. J Biomech. 2007;40(S2).

  44. Alswat KA. Gender disparities in osteoporosis. J Clin Med Research. 2017;9(5):382–7.

    Article  Google Scholar 

  45. Aris RM, Merkel PA, Bachrach LK, Borowitz DS, Boyle MP, Elkin SL, et al. Consensus statement: guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab. 2005;90(3):1888–96.

    Article  CAS  Google Scholar 

  46. Hollerman JJ, Fackler L, Coidweli M. Gunshot wounds: 1. Bullets, ballistics, and mechanisms of injury. AJR Am J Roentgenology. 1990;155:685–90.

  47. Kieser DC, Carr DJ, Leclair SCJ, Horsfall I, Theis JC, Swain MV, et al. Clothing increases the risk of indirect ballistic fractures. J Orthop Surg Res. 2013;8(1).

  48. Kneubuehl BP, Coupland RM, Rothshild A. Wound ballistics. Berlin Heidelberg: Springer-Verlag; 2011.

    Book  Google Scholar 

  49. Quatrehomme G, I̊şcan MY. Analysis of beveling in gunshot entrance wounds. Forensic Sci Int. 1998;93(1):45–60.

  50. Zátopková L, Hejna P. Fatal suicidal crossbow injury—the ability to act. J Forensic Sci. 2011;56(2):537–40.

    Article  Google Scholar 

  51. Karger B, Sudhues H, Kneubuehl BP, Brinkmann B. Experimental arrow wounds: ballistics and traumatology. J Trauma Acute Care Surg. 1998;45(3):495–501.

    Article  CAS  Google Scholar 

  52. Pomara C, D’Errico S, Neri M. An unusual case of crossbow homicide. Forensic Sci Med Pathol. 2007;3(2):124–7.

    Article  CAS  Google Scholar 

  53. Cappella A, Castoldi E, Sforza C, Cattaneo C. An osteological revisitation of autopsies: comparing anthropological findings on exhumed skeletons to their respective autopsy reports in seven cases. Forensic Sci Int. 2014;244:315.e1-315.e10. https://doi.org/10.1016/j.forsciint.2014.09.003.

    Article  CAS  Google Scholar 

  54. Humphrey C, Kumaratilake J. Ballistics and anatomical modelling — a review. Leg Med. 2016;23:21–9. https://doi.org/10.1016/j.legalmed.2016.09.002.

    Article  Google Scholar 

  55. Pulen A, Kieser DC, Hooper G. A study into the viability of Synbone® as a proxy for Sus scrofa (domesticus) ribs for use with 5.56-mm open tip match ammunition in ballistic testing. Int J Legal Med. 2020;135(2):521–26. https://doi.org/10.1007/s00414-020-02416-8

  56. Smith MJ, James S, Pover T, Ball N, Barnetson V, Foster B, Guy C, Rickman J, Walton V. Fantastic plastic? Experimental evaluation of polyurethane bone substitutes as proxies for human bone in trauma simulations. Leg Med. 2015;17:427–35. https://doi.org/10.1016/j.legalmed.2015.06.007.

    Article  CAS  Google Scholar 

  57. Henwoond BJ, Appleby-Thomas G. The suitability of Synbone as a tissue analogue in ballistic impacts. J Mater Sci. 2020;55:3022–33. https://doi.org/10.1007/s10853-019-04231-y.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AV: conceptualisation, methodology (incl. literature search and data analysis), investigation, visualisation, writing — original draft. WK: writing — review and editing. IG: initiative, supervision, validation, writing — review. R-JO: supervision, validation, writing — review.

Corresponding author

Correspondence to Ignasi Galtés.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Informed consent was not required for this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In Fig. 1, Bone 3 and Bone 5 do not show the white lines indicating the fracture pattern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veenstra, A., Kerkhoff, W., Oostra, RJ. et al. Gunshot trauma in human long bones: towards practical diagnostic guidance for forensic anthropologists. Forensic Sci Med Pathol 18, 359–367 (2022). https://doi.org/10.1007/s12024-022-00479-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-022-00479-0

Keywords

Navigation