Skip to main content

Advertisement

Log in

Functional significance of channelopathy gene variants in unexplained death

  • Review
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

Determining the cause of unexplained death in all age groups, including infants, is a priority in forensic medicine. The triple risk model proposed for sudden infant death syndrome involves the intersection of three risks: (1) a critical developmental period in homeostatic control (2), exogenous stressors, and (3) a vulnerable infant. Even though sex and age factor into some forms of inherited arrhythmogenic deaths in young individuals and adults, more appropriate a dual-risk disease model for adults involves exogenous stressors and a vulnerable individual. The vulnerability aspect clearly has a genetic component as underscored by a number of recent large-scale and high-throughput genetic testing studies performed in attempt to define the causes of sudden unexplained death. These studies often focus on ‘cardiac’ and channelopathy genes. Genetic testing often identify lists of rare or ultra-rare nonsynonymous variants, classified according to the ACMG guidelines as ‘pathogenic’ or ‘likely pathogenic’, which may form the basis of diagnostic decisions and/or family counseling. However, computer algorithms used to categorize gene variants are not completely accurate and these variants are often not functionally tested to determine their pathogenicity. Due to conflicting computational predictions, a large number of variants are labeled as ‘variants of uncertain significance’ or VUS. Functional testing of these VUS can greatly assist to reclassify these VUS as ‘likely benign’ or ‘likely pathogenic’. However, functional testing has its limits and by itself cannot be used to determine cause of death. Going forward, computer algorithms must be improved to take account of variants across multiple genes and efforts must be expanded to obtain clinical, familial and segregation data. Forensic genetic testing needs to be held to the same rigorous standards as defined by the NIH Clinical Genome Resource Consortium, where functional evaluation of a channelopathy variant is only one (but important) aspect of the overall picture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Minino AM. Death in the United States, 2011. NCHS Data Brief. 2013;115:1–8.

    Google Scholar 

  2. Centers for Disease Control and Prevention. Prevention CfDCa. CDC Grand Rounds: Public health approaches to reducing U.S. infant mortality. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6231a3.htm. Accessed 19 Nov 2018.

  3. Murphy S, Xu JQ, Kochanek KD. Deaths: preliminary data for 2010. Natl Vital Stat Rep. 2012;60(4) http://www.cdc.gov/nchs/data/nvsr/nvsr60/nvsr60_04.pdf. Accessed 19 Nov 2018.

  4. Arnestad M, Crotti L, Rognum TO, Insolia R, Pedrazzini M, Ferrandi C, et al. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation. 2007;115:361–7.

    Article  PubMed  Google Scholar 

  5. Filiano JJ, Kinney HC. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Biol Neonate. 1994;65:194–7.

    Article  CAS  PubMed  Google Scholar 

  6. Zareba W, Moss AJ, Locati EH, Lehmann MH, Peterson DR, Hall WJ, et al. Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J Am Coll Cardiol. 2003;42:103–9.

    Article  PubMed  Google Scholar 

  7. Antzelevitch C. Brugada syndrome. Pacing Clin Electrophysiol. 2006;29:1130–59.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ashcroft FM. From molecule to malady. Nature. 2006;440:440–7.

    Article  CAS  PubMed  Google Scholar 

  9. Kass RS. The channelopathies: novel insights into molecular and genetic mechanisms of human disease. J Clin Invest. 2005;115:1986–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brugada J, Brugada R, Brugada P. Channelopathies: a new category of diseases causing sudden death. Herz. 2007;32:185–91.

    Article  PubMed  Google Scholar 

  11. Basso C, Carturan E, Pilichou K, Rizzo S, Corrado D, Thiene G. Sudden cardiac death with normal heart: molecular autopsy. Cardiovasc Pathol. 2010;19:321–5.

    Article  PubMed  Google Scholar 

  12. Coote JH, Chauhan RA. The sympathetic innervation of the heart: important new insights. Auton Neurosci. 2016;199:17–23.

    Article  CAS  PubMed  Google Scholar 

  13. Fukuda K, Kanazawa H, Aizawa Y, Ardell JL, Shivkumar K. Cardiac innervation and sudden cardiac death. Circ Res. 2015;116:2005–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maron BJ, Clark CE, Goldstein RE, Epstein SE. Potential role of QT interval prolongation in sudden infant death syndrome. Circulation. 1976;54:423–30.

    Article  CAS  PubMed  Google Scholar 

  15. Schwartz PJ. Cardiac sympathetic innervation and the sudden infant death syndrome. A possible pathogenetic link. Am J Med. 1976;60:167–72.

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz PJ, Stramba-Badiale M, Segantini A, Austoni P, Bosi G, Giorgetti R, et al. Prolongation of the QT interval and the sudden infant death syndrome. N Engl J Med. 1998;338:1709–14.

    Article  CAS  PubMed  Google Scholar 

  17. Kukolich MK, Telsey A, Ott J, Motulsky AG. Sudden infant death syndrome: normal QT interval on ECGs of relatives. Pediatrics. 1977;60:51–4.

    CAS  PubMed  Google Scholar 

  18. Kelly DH, Shannon DC, Liberthson RR. The role of the QT interval in the sudden infant death syndrome. Circulation. 1977;55:633–5.

    Article  CAS  PubMed  Google Scholar 

  19. Steinschneider A. Sudden infant death syndrome and prolongation of the QT interval. Am J Dis Child. 1978;132:688–91.

    CAS  PubMed  Google Scholar 

  20. Davis AM, Glengarry J, Skinner JR. Sudden infant death: QT or not QT? That is no longer the question. Circ Arrhythm Electrophysiol. 2016;9(6).

  21. Schwartz PJ, Priori SG, Dumaine R, Napolitano C, Antzelevitch C, Stramba-Badiale M, et al. A molecular link between the sudden infant death syndrome and the long-QT syndrome. N Engl J Med. 2000;343:262–7.

    Article  CAS  PubMed  Google Scholar 

  22. Ackerman MJ, Siu BL, Sturner WQ, Tester DJ, Valdivia CR, Makielski JC, et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA. 2001;286:2264–9.

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz PJ, Priori SG, Bloise R, Napolitano C, Ronchetti E, Piccinini A, et al. Molecular diagnosis in a child with sudden infant death syndrome. Lancet. 2001;358:1342–3.

    Article  CAS  PubMed  Google Scholar 

  24. Wedekind H, Smits JP, Schulze-Bahr E, Arnold R, Veldkamp MW, Bajanowski T, et al. De novo mutation in the SCN5A gene associated with early onset of sudden infant death. Circulation. 2001;104:1158–64.

    Article  CAS  PubMed  Google Scholar 

  25. Wehrens XH, Marks AR. Sudden unexplained death caused by cardiac ryanodine receptor (RyR2) mutations. Mayo Clin Proc. 2004;79:1367–71.

    Article  PubMed  Google Scholar 

  26. Christiansen M, Tonder N, Larsen LA, Andersen PS, Simonsen H, Oyen N, et al. Mutations in the HERG K+−ion channel: a novel link between long QT syndrome and sudden infant death syndrome. Am J Cardiol. 2005;95:433–4.

    Article  CAS  PubMed  Google Scholar 

  27. Plant LD, Bowers PN, Liu Q, Morgan T, Zhang T, State MW, et al. A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y. J Clin Invest. 2006;116:430–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cronk LB, Ye B, Kaku T, Tester DJ, Vatta M, Makielski JC, et al. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm. 2007;4:161–6.

    Article  PubMed  Google Scholar 

  29. Otagiri T, Kijima K, Osawa M, Ishii K, Makita N, Matoba R, et al. Cardiac ion channel gene mutations in sudden infant death syndrome. Pediatr Res. 2008;64:482–7.

    Article  CAS  PubMed  Google Scholar 

  30. Rhodes TE, Abraham RL, Welch RC, Vanoye CG, Crotti L, Arnestad M, et al. Cardiac potassium channel dysfunction in sudden infant death syndrome. J Mol Cell Cardiol. 2008;44:571–81.

    Article  CAS  PubMed  Google Scholar 

  31. Tester DJ, Tan BH, Medeiros-Domingo A, Song C, Makielski JC, Ackerman MJ. Loss-of-function mutations in the KCNJ8-encoded Kir6.1 K(ATP) channel and sudden infant death syndrome. Circ Cardiovasc Genet. 2011;4:510–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crotti L, Tester DJ, White WM, Bartos DC, Insolia R, Besana A, et al. Long QT syndrome-associated mutations in intrauterine fetal death. JAMA. 2013;309:1473–82.

    Article  CAS  PubMed  Google Scholar 

  33. Klaver EC, Versluijs GM, Wilders R. Cardiac ion channel mutations in the sudden infant death syndrome. Int J Cardiol. 2011;152:162–70.

    Article  PubMed  Google Scholar 

  34. Wedekind H, Bajanowski T, Friederich P, Breithardt G, Wulfing T, Siebrands C, et al. Sudden infant death syndrome and long QT syndrome: an epidemiological and genetic study. Int J Legal Med. 2006;120:129–37.

    Article  PubMed  Google Scholar 

  35. Glengarry JM, Crawford J, Morrow PL, Stables SR, Love DR, Skinner JR. Long QT molecular autopsy in sudden infant death syndrome. Arch Dis Child. 2014;99:635–40.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang D, Shah KR, Um SY, Eng LS, Zhou B, Lin Y, et al. Cardiac channelopathy testing in 274 ethnically diverse sudden unexplained deaths. Forensic Sci Int. 2014;237:90–9.

    Article  CAS  PubMed  Google Scholar 

  37. Bagnall RD, Weintraub RG, Ingles J, Duflou J, Yeates L, Lam L, et al. A prospective study of sudden cardiac death among children and young adults. N Engl J Med. 2016;374:2441–52.

    Article  PubMed  Google Scholar 

  38. Dewar LJ, Alcaide M, Fornika D, D'Amato L, Shafaatalab S, Stevens CM, et al. Investigating the genetic causes of sudden unexpected death in children through targeted next-generation sequencing analysis. Circ Cardiovasc Genet. 2017;10(4).

  39. Tester DJ, Wong LCH, Chanana P, Jaye A, Evans JM, FitzPatrick DR, et al. Cardiac genetic predisposition in sudden infant death syndrome. J Am Coll Cardiol. 2018;71:1217–27.

    Article  PubMed  Google Scholar 

  40. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lin Y, Williams N, Wang D, Coetzee W, Zhou B, Eng LS, et al. Applying high-resolution variant classification to cardiac arrhythmogenic gene testing in a demographically diverse cohort of sudden unexplained deaths. Circ Cardiovasc Genet. 2017;10(6).

  42. Ernst C, Hahnen E, Engel C, Nothnagel M, Weber J, Schmutzler RK, et al. Performance of in silico prediction tools for the classification of rare BRCA1/2 missense variants in clinical diagnostics. BMC Med Genet. 2018;11:35.

    Google Scholar 

  43. Tavtigian SV, Greenblatt MS, Harrison SM, Nussbaum RL, Prabhu SA, Boucher KM, et al. Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet Med. 2018;20:1054–60.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li J, Zhao T, Zhang Y, Zhang K, Shi L, Chen Y, et al. Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res. 2018;46:7793–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tandy-Connor S, Guiltinan J, Krempely K, LaDuca H, Reineke P, Gutierrez S, et al. False-positive results released by direct-to-consumer genetic tests highlight the importance of clinical confirmation testing for appropriate patient care. Genet Med. 2018. https://doi.org/10.1038/gim.2018.38.

  46. Gando I, Morganstein J, Jana K, McDonald TV, Tang Y, Coetzee WA. Infant sudden death: mutations responsible for impaired Nav1.5 channel trafficking and function. Pacing Clin Electrophysiol. 2017;40:703–12.

    Article  PubMed  Google Scholar 

  47. Saito Y, Nakamura K, Nishi N, Igawa O, Yoshida M, Miyoshi T, et al. TRPM4 mutation in patients with ventricular noncompaction and cardiac conduction disease. Circ Genom Precis Med. 2018;11:e002103.

    Article  CAS  PubMed  Google Scholar 

  48. Bianchi B, Ozhathil LC, Medeiros-Domingo A, Gollob MH, Abriel H. Four TRPM4 cation channel mutations found in cardiac conduction diseases lead to altered protein stability. Front Physiol. 2018;9:177.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tian J, An XJ, Fu MY. Transient receptor potential melastatin 4 cation channel in pediatric heart block. Eur Rev Med Pharmacol Sci. 2017;21:79–84.

    CAS  PubMed  Google Scholar 

  50. Hof T, Liu H, Salle L, Schott JJ, Ducreux C, Millat G, et al. TRPM4 non-selective cation channel variants in long QT syndrome. BMC Med Genet. 2017;18:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Syam N, Chatel S, Ozhathil LC, Sottas V, Rougier JS, Baruteau A, et al. Variants of transient receptor potential melastatin member 4 in childhood atrioventricular block. J Am Heart Assoc. 2016;5(5).

  52. Liu H, Chatel S, Simard C, Syam N, Salle L, Probst V, et al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS One. 2013;8:e54131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Daumy X, Amarouch MY, Lindenbaum P, Bonnaud S, Charpentier E, Bianchi B, et al. Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I. Int J Cardiol. 2016;207:349–58.

    Article  PubMed  Google Scholar 

  54. Baruteau AE, Probst V, Abriel H. Inherited progressive cardiac conduction disorders. Curr Opin Cardiol. 2015;30:33–9.

    Article  PubMed  Google Scholar 

  55. Subbotina E, Williams N, Sampson BA, Tang Y, Coetzee WA. Functional characterization of TRPM4 variants identified in sudden unexpected natural death. Forensic Sci Int. 2018;293:37–46.

    Article  CAS  PubMed  Google Scholar 

  56. Hosseini SM, Kim R, Udupa S, Costain G, Jobling R, Liston E, et al. Reappraisal of reported genes for sudden arrhythmic death: An evidence-based evaluation of gene validity for brugada syndrome. Circulation. 2018. https://doi.org/10.1161/CIRCULATIONAHA.118.035070.

  57. NIH Clinical Genome Resource Consortium. Standard operating procedures (version 6). https://www.clinicalgenome.org/curation-activities/gene-disease-validity/educational-and-training-materials/standard-operating-procedures/. Accessed 19 Nov 2018.

Download references

Funding

These studies were supported by NIJ (2015-DN-BX-K017), the American SIDS Institute and by the Seventh Masonic District Association, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Coetzee.

Ethics declarations

This review conforms to all known ethical standards.

Conflict of interest

None.

Ethical approval

Not required.

Informed consent

Not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gando, I., Yang, HQ. & Coetzee, W.A. Functional significance of channelopathy gene variants in unexplained death. Forensic Sci Med Pathol 15, 437–444 (2019). https://doi.org/10.1007/s12024-018-0063-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-018-0063-y

Keywords

Navigation