Fatal combination of mitragynine and quetiapine – a case report with discussion of a potential herb-drug interaction


Kratom is a plant with dose-dependent mixed stimulant and opioid properties whose pharmacologic characteristics and social impact continue to be described. The main active isolate of kratom is mitragynine, an indole-containing alkaloid with opioid-like effects. Kratom toxicity and kratom-associated fatalities have been described, including those in association with additional drugs. In this paper we describe the case of a 27-year-old man who was found deceased with a toxic blood concentration of quetiapine in conjunction with the qualitative presence of mitragynine. Investigative and autopsy findings suggested perimortem hyperthermia and seizure-like activity. Kratom toxicity and kratom-associated fatalities are being increasingly reported. Experiments with kratom extracts have shown inhibitory effects upon hepatic CYP enzymes, leading to previous speculation of the potential for clinically significant interactions between kratom and a wide array of medications. Herein is described a fatal case of quetiapine toxicity complicated by mitragynine use. The potential ability of mitragynine to alter the pharmacokinetics of a prescription medication via inhibition of its hepatic metabolism is discussed.

This is a preview of subscription content, log in to check access.


  1. 1.

    Trakulsrichai S, Sathirakul K, Auparakkitanon S, Krongvorakul J, Sueajai J, Noumjad N, et al. Pharmacokinetics of mitragynine in man. Drug Des Devel Ther. 2015;9:2421–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Prozialeck W, Jivan J, Andurkar S. Pharmacology of kratom: an emerging botanical agent with stimulant, analgesic and opioid-like effects. J Am Osteopath Assoc. 2012;112:792–9.

    PubMed  Google Scholar 

  3. 3.

    Pantano F, Tittarelli R, Mannocchi G, Zaami S, Ricci S, Giorgetti R, et al. Hepatotoxicity induced by “the 3Ks”: kava, kratom and khat. Int J Mol Sci. 2016;17:580.

    Article  Google Scholar 

  4. 4.

    Kratom (Mitragyna speciosa korth). 2013. http://www.deadiversion.usdoj.gov/drug_chem_info/kratom.pdf. Accessed 7 July 2016.

  5. 5.

    Castillo A, Payne JD, Nugent K. Posterior reversible leukoencephalopathy syndrome after kratom ingestion. Proc (Baylor Univ Med Cent). 2017;30:355–7.

    Article  Google Scholar 

  6. 6.

    Galbis-Reig D. A case report of kratom addiction and withdrawal. WMJ. 2016;115:49–52.

    PubMed  Google Scholar 

  7. 7.

    Food and Drug Administration. 2018. Statement for FDA Commissioner Scott Gottlieb, M.D., on the agency’s scientific evidence on the presence of opioid compounds in kratom, underscoring its potential for abuse [Press release]. https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm595622.htm. Accessed 2 Aug 2018.

  8. 8.

    Aggarwal G, Robertson E, McKinlay J, Walter E. Death from kratom toxicity and the possible role of intralipid. J Intensive Care Soc. 2018;19:61–3.

    Article  Google Scholar 

  9. 9.

    Domingo O, Roider G, Stover A, Graw M, Musshoff F, Sachs H, et al. Mitragynine concentrations in two fatalities. Forensic Sci Int. 2017;271:e1–7.

    CAS  Article  Google Scholar 

  10. 10.

    Warner ML, Kaufman NC, Grundmann O. The pharmacology and toxicology of kratom: from traditional herb to drug of abuse. Int J Legal Med. 2016;130:127–38.

    Article  Google Scholar 

  11. 11.

    Nelsen JL, Lapoint J, Hodgman MJ, Aldous KM. Seizure and coma following kratom (mitragynine speciosa korth) exposure. J Med Toxicol. 2010;6:424–6.

    Article  Google Scholar 

  12. 12.

    Baselt RC. Disposition of toxic drugs and chemicals in man. 8th ed. Foster City (CA): Biomedical Publications; 2008.

    Google Scholar 

  13. 13.

    Molina DK. Handbook of forensic toxicology for medical examiners. Boca Raton: CRC Press; 2010.

    Google Scholar 

  14. 14.

    Gortney JS, Fagan A, Kissack JC. Neuroleptic malignant syndrome secondary to quetiapine. Ann Pharmacother. 2009;43:785–91.

    CAS  Article  Google Scholar 

  15. 15.

    Raffa RB. Kratom and other mitragynines: the chemistry and pharmacology of opioids from a non-opium source. Boca Raton: CRC Press; 2015.

    Google Scholar 

  16. 16.

    Harmon TJ, Benitez JG, Krenzelok EP, Cortes-Belen E. Loss of consciousness from acute quetiapine overdosage. J Toxicol Clin Toxicol. 1998;36:599–602.

    CAS  Article  Google Scholar 

  17. 17.

    Devane CL, Nemeroff CB. Clinical pharmacokinetics of quetiapine: an atypical antipsychotic. Clin Pharmacokinet. 2001;40:509–22.

    CAS  Article  Google Scholar 

  18. 18.

    Bakken GV, Rudberg I, Christensen H, Molden E, Refsum H, Hermann M. Metabolism of quetiapine by CYP3A4 and CYP3A5 in presence or absence of cytochrome B5. Drug Metab Dispos. 2009;37:254–8.

    CAS  Article  Google Scholar 

  19. 19.

    Grimm SW, Richtand NM, Winter HR, Stams KR, Reele SB. Effects of cytochrome P450 3A modulators ketoconazole and carbamazepine on quetiapine pharmacokinetics. Br J Clin Pharmacol. 2006;61:58–69.

    CAS  Article  Google Scholar 

  20. 20.

    Hanapi NA, Ismail S, Mansor SM. Inhibitory effect of mitragynine on human cytochrome P450 enzyme activities. Pharm Res. 2013;5:241–6.

    CAS  Google Scholar 

  21. 21.

    Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007;76:391–6.

    PubMed  Google Scholar 

  22. 22.

    Hasselstrom J, Linnet K. In vitro studies on quetiapine metabolism using the substrate depletion approach with focus on drug-drug interactions. Drug Metabol Drug Interact. 2006;21:187–211.

    Article  Google Scholar 

  23. 23.

    Meyer MR, Wagmann L, Schneider-Daum N, Loretz B, de Souza Carvalho C, Lehr CM, et al. P-glycoprotein interactions of novel psychoactive substances – stimulation of ATP consumption and transport across Caco-2 monolayers. Biochem Pharmacol. 2015;94:220–6.

    CAS  Article  Google Scholar 

  24. 24.

    Schmitt U, Kirschbaum KM, Poller B, Kusch-Poddar M, Drewe J, Hiemke C, et al. In vitro p-glycoprotein efflux inhibition by atypical antipsychotics is in vivo nicely reflected by pharmacodynamic but less by pharmacokinetic changes. Pharmacol Biochem Behav. 2012;102:312–20.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Rhome L. Hughes.

Ethics declarations

Conflict of interest


Ethical approval

Not applicable.

Informed consent

Not applicable.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hughes, R.L. Fatal combination of mitragynine and quetiapine – a case report with discussion of a potential herb-drug interaction. Forensic Sci Med Pathol 15, 110–113 (2019). https://doi.org/10.1007/s12024-018-0049-9

Download citation


  • Kratom
  • Mitragynine
  • Quetiapine
  • Overdose
  • CYP