The apoptotic thanatotranscriptome associated with the liver of cadavers

Abstract

Gene expression investigations are well-established components of ante mortem studies with broad applications ranging from elucidating basic mechanisms responsible for normal physiological processes to discovering therapeutic targets in pathophysiological conditions. However, gene expression studies and their application in the medico-legal field are still in their infancy. Therefore, the present study focuses on RNA using PCR array in the analysis of gene expression associated with tissues taken from actual criminal cases. RNA was extracted from the liver tissues of bodies with PMIs between 6 and 48 h. The results demonstrated that mRNA was stable up to 48 h postmortem. Further, as cell death is an indispensable and necessary part of the biological life cycle, apoptotic gene expression profiles were investigated. The gene expression related to the programmed cell death found in body tissues after death is defined as the apoptotic thanatotranscriptome (thanatos-, Greek for death). On comparison of control and decaying tissues, the results show that with time, pro-apoptotic genes such as caspases are up-regulated and the expression of genes responsible for anti-apoptosis such as BCL2 and BAG3 were down-regulated. Thus, this current work gives a unique perspective of the apoptotic thanatotranscriptome that is affected after death. Up to the present time, gene expression in bodies from criminal cases has not been reported in literature using PCR array techniques. Thus, this thanatotranscriptome study provides insight into postmortem gene activity with potential applications in medico-legal investigations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Can I, Javan GT, Pozhitkov AE, Noble PA. Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans. J Microbiol Methods. 2014;106:1–7.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Heinrich M, Matt K, Lutz-Bonengel S, Schmidt U. Successful RNA extraction from various human postmortem tissues. Int J Legal Med. 2007;121:136–42.

    Article  PubMed  Google Scholar 

  3. 3.

    Preece P, Cairns NJ. Quantifying mRNA in postmortem human brain: influence of gender, age at death, postmortem interval, brain pH, agonal state and inter-lobe mRNA variance. Mol Brain Res. 2003;118:60–71.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Fitzpatrick R, Casey OM, Morris D, Smith T, Powell R, Sreenan JM. Postmortem stability of RNA isolated from bovine reproductive tissues. Biochim Biophys Acta. 2002;1574:10–4.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Fordyce SL, Kampmann ML, van Doorn NL, Gilbert MT. Long-term RNA persistence in postmortem contexts. Investig Genet. 2013;4:7.

    PubMed Central  Article  PubMed  Google Scholar 

  6. 6.

    Botling J, Edlund K, Segersten U, Tahmasebpoor S, Engström M, Sundström M, et al. Impact of thawing on RNA integrity and gene expression analysis in fresh frozen tissue. Diagn Mol Pathol. 2009;18:44–52.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Bauer M, Gramlich I, Polzin S, Patzelt D. Quantification of mRNA degradation as possible indicator of postmortem interval—a pilot study. Leg Med. 2003;5:220–7.

    CAS  Article  Google Scholar 

  8. 8.

    Bauer M. RNA in forensic science. Forensic Sci Int Genet. 2007;1:69–74.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Birdsill AC, Walker DG, Lue L, Sue LI, Beach TG. Postmortem interval effect on RNA and gene expression in human brain tissue. Cell Tissue Bank. 2011;12:311–8.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  10. 10.

    González-Herrera L, Valenzuela A, Marchal JA, Lorente JA, Villanueva E. Studies on RNA integrity and gene expression in human myocardial tissue, pericardial fluid and blood, and its postmortem stability. Forensic Sci Int. 2013;232:218–28.

    Article  PubMed  Google Scholar 

  11. 11.

    Finger JM, Mercer JF, Cotton RG, Danks DM. Stability of protein and mRNA in human postmortem liver-analysis by two-dimensional gel electrophoresis. Clin Chim Acta. 1987;170:209–18.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Hansen J, Lesnikova I, Funder AMD, Banner J. DNA and RNA analysis of blood and muscle from bodies with variable postmortem intervals. Forensic Sci Med Pathol. 2014;10:322–8.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Yasojima K, McGeer EG, McGeer PL. High stability of mRNAs postmortem and protocols for their assessment by RT-PCR. Brain Res Protoc. 2001;8:212–8.

    CAS  Article  Google Scholar 

  14. 14.

    Anderson S, Howard B, Hobbs GR, Bishop CP. A method for determining the age of a bloodstain. Forensic Sci Int. 2005;148:37–45.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Bauer M, Polzin S, Patzelt D. Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci Int. 2003;138:94–103.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Bauer M, Kraus A, Patzelt D. Detection of epithelial cells in dried blood stains by reverse transcriptase–polymerase chain reaction. J Forensic Sci. 1999;44:1232–6.

    CAS  PubMed  Google Scholar 

  17. 17.

    Zubakov D, Kokshoorn M, Kloosterman A, Kayser M. New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains. Int J Legal Med. 2009;123:71–4.

    Article  PubMed  Google Scholar 

  18. 18.

    Setzer M, Juusola J, Ballantyne J. Recovery and stability of RNA in vaginal swabs and blood, semen, and saliva stains. J Forensic Sci. 2008;53:296–305.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Sakurada K, Ikegaya H, Fukushima H, Akutsu T, Watanabe K, Yoshino M. Evaluation of mRNA-based approach for identification of saliva and semen. Leg Med. 2009;11:125–8.

    CAS  Article  Google Scholar 

  20. 20.

    Kuliwaba JS, Fazzalari NL, Findlay DM. Stability of RNA isolated from human trabecular bone at post-mortem and surgery. Biochim Biophys Acta. 2005;1740:1–11.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    van Doorn NL, Wilson AS, Willerslev E, Gilbert MTP. Bone marrow and bone as a source for postmortem RNA. J Forensic Sci. 2011;56:720–5.

    Article  PubMed  Google Scholar 

  22. 22.

    King K, Flinter FA, Green PM. Hair roots as the ideal source of mRNA for genetic testing. J Med Genet. 2001;38:e20.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  23. 23.

    Williams T, Soni S, White J, Can G, Javan GT. Evaluation of DNA degradation using flow cytometry: promising tool for postmortem interval determination. Am J Forensic Med Pathol. 2015;36:104–10.

    Article  PubMed  Google Scholar 

  24. 24.

    Sampaio-Silva F, Magalhães T, Carvalho F, Dinis-Oliveira RJ, Silvestre R. Profiling of RNA degradation for estimation of post morterm interval. PLoS ONE. 2013;8:e56507.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  25. 25.

    Hynd MR, Lewohl JM, Scott HL, Dodd PR. Biochemical and molecular studies using human autopsy brain tissue. J Neurochem. 2003;85:543–62.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Vennemann M, Koppelkamm A. mRNA profiling in forensic genetics I: possibilities and limitations. Forensic Sci Int. 2010;203:71–5.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Zubakov D, Hanekamp E, Kokshoorn M, van IJcken W, Kayser M. Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples. Int J Legal Med. 2008;122:135–42.

    PubMed Central  Article  PubMed  Google Scholar 

  28. 28.

    Lee J, Hever A, Willhite D, Zlotnik A, Hevezi P. Effects of RNA degradation on gene expression analysis of human postmortem tissues. FASEB J. 2005;19:1356–8.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Gupta S, Halushka MK, Hilton GM, Arking DE. Postmortem cardiac tissue maintains gene expression profile even after late harvesting. BMC Genom. 2012;13:26.

    CAS  Article  Google Scholar 

  30. 30.

    Koppelkamm A, Vennemann B, Fracasso T, Lutz-Bonengel S, Schmidt U, Heinrich M. Validation of adequate endogenous reference genes for the normalisation of qPCR gene expression data in human post mortem tissue. Int J Legal Med. 2010;124:371–80.

    Article  PubMed  Google Scholar 

  31. 31.

    Koppelkamm A, Vennemann B, Lutz-Bonengel S, Fracasso T, Vennemann M. RNA integrity in post-mortem samples: influencing parameters and implications on RT-qPCR assays. Int J Legal Med. 2011;125:573–80.

    Article  PubMed  Google Scholar 

  32. 32.

    Durrenberger PF, Fernando S, Kashefi SN, Ferrer I, Hauw JJ, Seilhean D, et al. Effects of antemortem and postmortem variables on human brain mRNA quality: a BrainNet Europe study. J Neuropathol Exp Neurol. 2010;69:70–81.

    Article  PubMed  Google Scholar 

  33. 33.

    Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME. Apoptosis signaling by death receptors. Eur J Biochem. 1998;254:439–59.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Duprez L, Wirawan E, Berghe TV, Vandenabeele P. Major cell death pathways at a glance. Microbes Infect. 2009;11:1050–62.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22:526–39.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation (NSF) Grant HRD 1401075. The authors would like to thank Cuneyt Bademcioglu for his intellectual contribution and proofreading.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gulnaz T. Javan.

Additional information

Gulnaz T. Javan and Ismail Can have contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Javan, G.T., Can, I., Finley, S.J. et al. The apoptotic thanatotranscriptome associated with the liver of cadavers. Forensic Sci Med Pathol 11, 509–516 (2015). https://doi.org/10.1007/s12024-015-9704-6

Download citation

Keywords

  • Thanatotranscriptome
  • Gene expression
  • Cadaver liver
  • PCR array