Skip to main content
Log in

Simultaneous analysis of nuclear and mitochondrial DNA, mRNA and miRNA from backspatter from inside parts of firearms generated by shots at “triple contrast” doped ballistic models

  • Original Article
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

When a firearm projectile hits a biological target a spray of biological material (e.g., blood and tissue fragments) can be propelled from the entrance wound back towards the firearm. This phenomenon has become known as “backspatter” and if caused by contact shots or shots from short distances traces of backspatter may reach, consolidate on, and be recovered from, the inside surfaces of the firearm. Thus, a comprehensive investigation of firearm-related crimes must not only comprise of wound ballistic assessment but also backspatter analysis, and may even take into account potential correlations between these emergences. The aim of the present study was to evaluate and expand the applicability of the “triple contrast” method by probing its compatibility with forensic analysis of nuclear and mitochondrial DNA and the simultaneous investigation of co-extracted mRNA and miRNA from backspatter collected from internal components of different types of firearms after experimental shootings. We demonstrate that “triple contrast” stained biological samples collected from the inside surfaces of firearms are amenable to forensic co-analysis of DNA and RNA and permit sequence analysis of the entire mtDNA displacement-loop, even for “low template” DNA amounts that preclude standard short tandem repeat DNA analysis. Our findings underscore the “triple contrast” method’s usefulness as a research tool in experimental forensic ballistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gross H. Handbuch für Untersuchungsrichter, Polizeibeamte, Gendarmen u.s.w. 2nd ed. Graz: Leuschner & Lubinsky; 1894.

  2. Weimann W. Über das Verspritzen von Gewebsteilen aus Einschussöffnungen und seine kriminalistische Bedeutung. Dtsch Z Gerichtl Med. 1931;17:92–105.

    Google Scholar 

  3. Brüning A, Wiethold F. Die Untersuchung und Beurteilung von Selbstmörderschusswaffen. Dtsch Z Gerichtl Med. 1934;23:71–82.

    Google Scholar 

  4. Stone IC. Observations and statistics relating to suicide weapons. J Forensic Sci. 1987;32:711–6.

    CAS  PubMed  Google Scholar 

  5. Stone IC. Characteristics of firearms and gunshot wounds as markers of suicide. Am J Forensic Med Pathol. 1992;13:275–80.

    Article  CAS  PubMed  Google Scholar 

  6. Visser JM. Detection and significance of blood in firearms used in contact gunshot wounds. Dissertation: University of Pretoria; 2003.

  7. Schyma C, Madea B, Courts C. Persistence of biological traces in gun barrels after fatal contact shots. Forensic Sci Int Genet. 2013;7:22–7.

    Article  CAS  PubMed  Google Scholar 

  8. Courts C, Gahr B, Madea B, Schyma C. Persistence of biological traces at inside parts of a firearm from a case of multiple familial homicide. J Forensic Sci. 2014;59:1129–32.

    Article  CAS  PubMed  Google Scholar 

  9. Lux C, Schyma C, Madea B, Courts C. Identification of gunshots to the head by detection of RNA in backspatter primarily expressed in brain tissue. Forensic Sci Int. 2014;237:62–9.

    Article  CAS  PubMed  Google Scholar 

  10. Schyma C, Lux C, Madea B, Courts C. The ‘triple contrast’ method in experimental wound ballistics and backspatter analysis. Int J Legal Med. 2015;. doi:10.1007/s00414-015-1151-0.

    Google Scholar 

  11. Eichmann C, Parson W. ‘Mitominis’: multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples. Int J Legal Med. 2008;122:385–8.

    Article  PubMed  Google Scholar 

  12. Alonso A, Albarran C, Martin P, Garcia P, Garcia O, de la Rua C, et al. Multiplex–PCR of short amplicons for mtDNA sequencing from ancient DNA. Prog Forensic Genet. 2003;9(1239):585–8.

    Google Scholar 

  13. Sijen T. Molecular approaches for forensic cell type identification: on mRNA, miRNA, DNA methylation and microbial markers. Forensic Sci Int Genet. 2014;. doi:10.1016/j.fsigen.2014.11.015.

    Google Scholar 

  14. Grabmüller M, Madea B, Courts C. Comparative evaluation of different extraction and quantification methods for forensic RNA analysis. Forensic Sci Int Gen. 2015;16:195–202.

    Article  Google Scholar 

  15. Pang BC, Cheung BK. Double swab technique for collecting touched evidence. Leg Med (Tokyo). 2007;9:181–4.

    Article  CAS  PubMed  Google Scholar 

  16. Haas C, Hanson E, Bar W, Banemann R, Bento AM, Berti A, et al. mRNA profiling for the identification of blood-Results of a collaborative EDNAP exercise. Forensic Sci Int Genet. 2010;5:21–6.

    Article  PubMed  Google Scholar 

  17. Sauer E, Madea B, Courts C. An evidence based strategy for normalization of quantitative PCR data from miRNA expression analysis in forensically relevant body fluids. Forensic Sci Int Genet. 2014;11:174–81.

    Article  CAS  PubMed  Google Scholar 

  18. Courts C, Madea B. Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. J Forensic Sci. 2011;56:1464–70.

    Article  CAS  PubMed  Google Scholar 

  19. Lindenbergh A, de Pagter M, Ramdayal G, Visser M, Zubakov D, Kayser M, et al. A multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces. Forensic Sci Int Genet. 2012;6:565–77.

    Article  CAS  PubMed  Google Scholar 

  20. Wong L, Lee K, Russell I, Chen C. Endogenous controls for real-time quantitation of miRNA using TaqMan microRNA assays. Application Note (Applied Biosystems). 2010:1–8.

  21. Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 2004;32:D109–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Vandesompele J, De Preter K, Pattyn F, Poppe B, van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.

  23. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–50.

    Article  CAS  PubMed  Google Scholar 

  24. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26:509–15.

    Article  CAS  PubMed  Google Scholar 

  25. Zimmermann P, Bleuler S, Laule O, Martin F, Ivanov NV, Campanoni P, et al. Expression data—a public resource of high quality curated datasets representing gene expression across anatomy, development and experimental conditions. BioData Min. 2014;7:18.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hruz T, Wyss M, Docquier M, Pfaffl MW, Masanetz S, Borghi L, et al. RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genom. 2011;12:156.

    Article  CAS  Google Scholar 

  27. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7:3.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37:e45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.

    Article  CAS  PubMed  Google Scholar 

  30. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet. 1999;23:147.

    Article  CAS  PubMed  Google Scholar 

  31. Brüning A. Beiträge zur Untersuchung und Beurteilung von Geschossen usw. Arch Kriminol. 1925;77:85–6.

    Google Scholar 

  32. Betz P, Peschel O, Stiefel D, Eisenmenger W. Frequency of blood spatters on the shooting hand and of conjunctival petechiae following suicidal gunshots wounds to the head. Forensic Sci Int. 1995;76:47–53.

    Article  CAS  PubMed  Google Scholar 

  33. Schyma C. Wounding capacity of muzzle-gas pressure. Int J Legal Med. 2012;126:371–6.

    Article  PubMed  Google Scholar 

  34. Courts C, Madea B, Schyma C. Persistence of biological traces in gun barrels–an approach to an experimental model. Int J Legal Med. 2012;126:391–7.

    Article  PubMed  Google Scholar 

  35. Karger B, Nusse R, Schroeder G, Wustenbecker S, Brinkmann B. Backspatter from experimental close-range shots to the head I. Macrobackspatter. Int J Legal Med. 1996;109:66–74.

    Article  CAS  PubMed  Google Scholar 

  36. Karger B, Nusse R, Troger HD, Brinkmann B. Backspatter from experimental close-range shots to the head. II. Microbackspatter and the morphology of bloodstains. Int J Legal Med. 1997;110:27–30.

    Article  CAS  PubMed  Google Scholar 

  37. Karger B, Nusse R, Bajanowski T. Backspatter on the firearm and hand in experimental close-range gunshots to the head. Am J Forensic Med Pathol. 2002;23:211–3.

    Article  PubMed  Google Scholar 

  38. Kunz SN, Brandtner H, Meyer HJ. Characteristics of backspatter on the firearm and shooting hand—an experimental analysis of close-range gunshots. J Forensic Sci. 2015;60:166–70.

    Article  PubMed  Google Scholar 

  39. Budowle B. Mitochondrial DNA: a possible genetic material suitable for forensic analysis. In: Lee HC, Gaensslen RE, editors. Advances in forensic science. Chicago: Year Book Medical Publishers; 1990. p. 76–97.

    Google Scholar 

  40. Berger C, Parson W. Mini-midi-mito: adapting the amplification and sequencing strategy of mtDNA to the degradation state of crime scene samples. Forensic Sci Int Genet. 2009;3:149–53.

    Article  CAS  PubMed  Google Scholar 

  41. Phang TW, Shi CY, Chia JN, Ong CN. Amplification of cDNA via RT-PCR using RNA extracted from postmortem tissues. J Forensic Sci. 1994;39:1275–9.

    CAS  PubMed  Google Scholar 

  42. Bauer M, Kraus A, Patzelt D. Detection of epithelial cells in dried blood stains by reverse transcriptase–polymerase chain reaction. J Forensic Sci. 1999;44:1232–6.

    CAS  PubMed  Google Scholar 

  43. Juusola J, Ballantyne J. Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int. 2003;135:85–96.

    Article  CAS  PubMed  Google Scholar 

  44. Bauer M, Gramlich I, Polzin S, Patzelt D. Quantification of mRNA degradation as possible indicator of postmortem interval—a pilot study. Leg Med (Tokyo). 2003;5:220–7.

    Article  CAS  PubMed  Google Scholar 

  45. Miller CL, Diglisic S, Leister F, Webster M, Yolken RH. Evaluating RNA status for RT-PCR in extracts of postmortem human brain tissue. Biotechniques. 2004;36:628–33.

    CAS  PubMed  Google Scholar 

  46. van den Berge M, Carracedo A, Gomes I, Graham EA, Haas C, Hjort B, et al. A collaborative European exercise on mRNA-based body fluid/skin typing and interpretation of DNA and RNA results. Forensic Sci Int Genet. 2014;10:40–8.

    Article  PubMed  Google Scholar 

  47. Lindenbergh A, Maaskant P, Sijen T. Implementation of RNA profiling in forensic casework. Forensic Sci Int Genet. 2013;7:159–66.

    Article  CAS  PubMed  Google Scholar 

  48. Hanson EK, Lubenow H, Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem. 2009;387:303–14.

    Article  CAS  PubMed  Google Scholar 

  49. Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med. 2010;124:217–26.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Courts C, Madea B. Micro-RNA—a potential for forensic science? Forensic Sci Int. 2010;203:106–11.

    Article  CAS  PubMed  Google Scholar 

  51. Wang Z, Zhang J, Luo H, Ye Y, Yan J, Hou Y. Screening and confirmation of microRNA markers for forensic body fluid identification. Forensic Sci Int Genet. 2013;7:116–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the DFG (Deutsche Forschungsgemeinschaft) and the SNF (Swiss National Science Foundation) for funding this project. The expert technical assistance of Julia Brünig and Marion Sauer is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius Courts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12024_2015_9695_MOESM1_ESM.tif

Selection of a reference gene for mRNA expression data normalization using the “RefGenes” online resource (TIFF 1469 kb)

12024_2015_9695_MOESM2_ESM.tif

Imaging of PCR products resulting from two multiplex PCRs using “Mito-Mini” primer sets in “low template” samples. PCR products were separated via microfluid-gelelectrophoresis on an Agilent 2100 Bioanalyzer; Primer: primer name; bp: base pairs (TIFF 1320 kb)

Supplementary material 3 (PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabmüller, M., Schyma, C., Euteneuer, J. et al. Simultaneous analysis of nuclear and mitochondrial DNA, mRNA and miRNA from backspatter from inside parts of firearms generated by shots at “triple contrast” doped ballistic models. Forensic Sci Med Pathol 11, 365–375 (2015). https://doi.org/10.1007/s12024-015-9695-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-015-9695-3

Keywords

Navigation