Skip to main content

Advertisement

Log in

Heme oxygenase-1 and heme oxygenase-2 expression in bruises

  • Original Article
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

The first step in catabolism of hemoglobin in a bruise is performed by the enzyme heme oxygenase, which produces biliverdin that is then reduced to bilirubin. The development of yellow coloration in bruises can be attributed to local accumulation of degradation products of hemoglobin, including bilirubin, but it is not clear why there is a delay before this color change is apparent. One explanation may be that time is required for the establishment of heme oxygenase activity at the bruise site. This study used immunohistochemistry to examine the time course of expression of heme oxygenase-1 and heme oxygenase-2 in a rat bruise model. Heme oxygenase-1 levels rose above background from 6 h to peak from days 1 to 3. There was strong expression by macrophages, but only occasional neutrophils expression of heme oxygenase-1. Heme oxygenase-2 did not change significantly from background levels. The results suggest that the delay in the development of yellow coloration of bruises may in part be attributed to the requirement for macrophages to be recruited to the site of injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Langlois NEI. The science behind the quest to determine the age of bruises—a review of the English language literature. Forensic Sci Med Pathol. 2007;3(4):241–51.

    Article  CAS  PubMed  Google Scholar 

  2. Gondim RMF, Muñoz DR, Petri V. Child abuse: skin markers and differential diagnosis. An Bras Dermatol. 2011;86:527–36.

    Article  PubMed  Google Scholar 

  3. Fox AW. Elder abuse. Med Sci Law. 2012;52:128–36.

    Article  PubMed  Google Scholar 

  4. Langlois NEI, Gresham GA. The ageing of bruises: a review and study of the colour changes with time. Forensic Sci Int. 1991;50:227–38.

    Article  CAS  PubMed  Google Scholar 

  5. Hughes VK, Ellis P, Burt T, Langlois NEI. The practical application of reflectance spectrophotometry for the demonstration of haemoglobin and its degradation in bruises. J Clin Pathol. 2004;57:355–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Payne G, Langlois N, Lennard C, Roux C. Applying visible hyperspectral (chemical) imaging to estimate the age of bruisies. Med Sci Law. 2007;47:225–32.

    Article  PubMed  Google Scholar 

  7. Hughes VK, Ellis P, Langlois NEI. The perception of yellow in bruises. J Clin Forensic Med. 2004;11:257–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hughes VK, Langlois NEI. Use of reflectance spectrophotometry and colorimetry in a general linear model for the determination of the age of bruises. Forensic Sci Med Pathol. 2010;6(4):275–81.

    Article  PubMed  Google Scholar 

  9. Tenhunen R, Marver HS, Schmid R. Microsomal heme oxygenase characterisation of the enzyme. J Biol Chem. 1969;244:6388–94.

    CAS  PubMed  Google Scholar 

  10. Tenhunen R. The enzymatic degradation of heme. Semin Hematol. 1972;9:19–29.

    CAS  PubMed  Google Scholar 

  11. Maines MD, Cohn J. Bile pigment formation by skin heme oxygenase. Studies on the response of the enzyme to heme compounds and tissue injury. J Exp Med. 1977;145:1054–9.

    Article  CAS  PubMed  Google Scholar 

  12. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxciol. 1997;37:517–54.

    Article  CAS  Google Scholar 

  13. Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988;2:2557–68.

    CAS  PubMed  Google Scholar 

  14. Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86:583–650.

    Article  CAS  PubMed  Google Scholar 

  15. Agarwal A, Bolisetty S. Adaptive response to tissue injury: role of heme oxygenase-1. Trans Am Clin Climatol Assoc. 2013;124:111–22.

    PubMed Central  PubMed  Google Scholar 

  16. Shibahara S, Yoshizawa M, Suzuki H, Takeda K, Meguro K, Endo K. Functional analysis of cDNAs for two types of human heme oxygenase and evidence for their separate regulation. J Biochem. 1993;113:214–8.

    CAS  PubMed  Google Scholar 

  17. Kawamura K, Ishikawa K, Wada Y, Kimura S, Matsumoto H, Kohro T, et al. Bilirubin from heme oxygenase-1 attenuates vascular endothelial activation and dysfunction. Arterioscler Thromb Vasc Biol. 2005;25:155–60.

    CAS  PubMed  Google Scholar 

  18. Pimstone NR, Tenhunen R, Seitz PT, Marver HS, Schmid R. The enzymatic degradation of hemoglobin to bile pigments by macrophages. J Exp Med. 1971;133:1264–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Gemsa D, Woo CH, Fudenberg HH, Schmid R. Erythrocyte catabolism by macrophages in vitro. The effect of hydrocortisone on erythrophagocytosis and on the induction of heme oxygenase. J Clin Invest. 1973;52:812–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Schaer CA, Schoedon G, Imhof A, Kurrer MO, Schaer DJ. Constitutive endocytosis of CD163 mediates hemoglobin-heme uptake and determines the noninflammatory and protective transcriptional response of macrophages to hemoglobin. Circ Res. 2006;99:943–50.

    Article  CAS  PubMed  Google Scholar 

  21. Wunder C, Potter RF. The heme oxygenase system: its role in liver inflammation. Curr Drug Targets Cardiovasc Haematol Disord. 2003;3:199–208.

    Article  CAS  PubMed  Google Scholar 

  22. Zakhary R, Gaine SP, Dinerman JL, Raut M, Flavahan NA, Snyder SH. Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation. PNAS. 1996;93:795–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Grozdanovic Z, Gossrau R. Expression of heme oxygenase-2 (HO-2)-like immunoreactivity in rat tissues. Acta Histochem. 1996;98:203–14.

    Article  CAS  PubMed  Google Scholar 

  24. Maestrelli P, El Messlemani AH, De Fina O, Nowicki Y, Saetta M, Mapp C, et al. Increased expression of heme oxygenase (HO)-1 in alveolar spaces and HO-2 in alveolar walls of smokers. Am J Respir Crit Care Med. 2001;164:1508–13.

    Article  CAS  PubMed  Google Scholar 

  25. Lim S, Groneberg D, Fischer A, Oates T, Caramori G, Mattos W, et al. Expression of heme oxygenase isoenzymes 1 and 2 in normal and asthmatic airways. Effect of inhaled corticosteroids. Am J Respir Crit Care Med. 2014;162:1912–8.

    Article  Google Scholar 

  26. Seta F, Bellner L, Rezzani R, Regan RR, Dunn MW, Abraham NG, et al. Heme oxygenase-2 is a critical determinant for execution of an acute inflammatory and reparative response. Am J Pathol. 2006;169:1612–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Bellner L, Marrazzo G, van Rooijen N, Dunn MW, Abraham NG, Schwartzman ML. Heme oxygenase-2 deletion impairs macrophage function: implication in wound healing. FASEB J. 2015;29(1):105–15.

    Article  CAS  PubMed  Google Scholar 

  28. Wagener FADTG, Volk H-D, Willis D, Abraham NG, Soares MP, Adema GJ, et al. Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev. 2003;55:551–71.

    Article  CAS  PubMed  Google Scholar 

  29. McCoubrey WK, Huang TJ, Maines MD. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem. 1997;247:725–32.

    Article  CAS  PubMed  Google Scholar 

  30. Otterbein LE, Choi AMK. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1029–37.

    CAS  PubMed  Google Scholar 

  31. Deshane J, Wright M, Agarwal A. Heme oxygenase-1 expression in disease states. Acta Biochem Pol. 2005;52:273–84.

    CAS  Google Scholar 

  32. Ross C, Byard RW, Langlois NEI. Does the intensity of the inflammatory reaction in a bruise depend on its proximity to the site of trauma? Forensic Sci Med Pathol. 2013;9:358–62.

    Article  PubMed  Google Scholar 

  33. Nakajima T, Hayakawa M, Yajima D, Motani-Saitoh H, Sato Y, Kiuchi M, et al. Time-course changes in the expression of heme oxygenase-1 in human subcutaneous hemorrhage. Forensic Sci Int. 2006;158:157–63.

    Article  CAS  PubMed  Google Scholar 

  34. Hanselmann C, Mauch C, Werner S. Haem oxygenase-1: a novel player in cutaneous wound repair and psoriasis? Biochem J. 2001;353:459–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kämpfer H, Koib N, Manderscheid M, Wetzler C, Pfeilschifter J, Frank S. Macrophage-derived heme-oxygenase-1: expression, regulation, and possible functions in skin repair. Mol Med. 2001;7:488–98.

    PubMed Central  PubMed  Google Scholar 

  36. Willis D, Moore AR, Frederick R, Willoughby DA. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat Med. 1996;2:87–93.

    Article  CAS  PubMed  Google Scholar 

  37. Theilgaard-Mönch K, Knudson S, Follin P, Borregaard N. The transcriptional activation program of human neutrophils in skin lesions supports their role in wound healing. J Immunol. 2004;172:7684–93.

    Article  PubMed  Google Scholar 

  38. Liu Y, Tachibana T, Dai Y, Hondo E, Fukuoka T, Yamanaka H, et al. Heme oxygenase-1 expression after spinal cord injury: the induction in activated neutrophils. J Neurotrauma. 2002;19:479–90.

    Article  PubMed  Google Scholar 

  39. Willis D, Moore AR, Willoughby DA. Heme oxygenase isoform expression in cellular and antibody-mediated models of acute inflammation in the rat. J Pathol. 2000;190:627–34.

    Article  CAS  PubMed  Google Scholar 

  40. Beyrau M, Bodkin JV, Nourshargh S. Neutrophil heterogeneity in health and disease: a revitalized avenue in inflammation and immunity. Open Biol. 2012;2(11):120134.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Applegate LA, Noël A, Vile G, Frenk E, Tyrrell RM. Two genes contribute to different extents to the heme oxygenase enzyme activity measured in cultured human skin fibroblasts and keratinocytes: implications for protection against oxidant stress. Photochem Photobiol. 1995;61:285–91.

    Article  CAS  PubMed  Google Scholar 

  42. Numata I, Okuyama R, Memezawa A, Ito Y, Takeda K, Furuyama K, et al. Functional expression of heme oxygenase-1 in human differentiated epidermis and its regulation by cytokines. J Invest Dermatol. 2010;129:2594–603.

    Article  Google Scholar 

  43. Weber-Matthiesen K, Sterry W. Organisation of the monocyte/macrophage system of the normal skin. J Invest Dermatol. 1990;95:83–9.

    Article  CAS  PubMed  Google Scholar 

  44. Tarran S, Langlois NEI, Dziewulski P, Sztynda T. Using the inflammatory cell infiltrate to estimate the age of human burn wounds: a review and immunohistochemical study. Med Sci Law. 2006;46:115–26.

    Article  PubMed  Google Scholar 

  45. Yoshida T, Sato M. Posttranslational and direct integration of heme oxygenase into microsomes. Biochem Biophy Res Commun. 1989;163:1086–92.

    Article  CAS  Google Scholar 

  46. Lin Q, Weis S, Yang G, Weng YH, Helston R, Rish K, et al. Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem. 2007;13:20621–33.

    Article  Google Scholar 

  47. Linnenbaum M, Busker M, Kraehling JR, Behrends S. Heme oxygenase isoforms differ in their subcellular trafficking during hypoxia and are differentially modulated by cytochrome P450 reductase. PLoS ONE. 2012;7:e35483.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Randeberg LL, Winnem AM, Larsen ELP, Haaverstad R, Haugen OA, Svaasand LO. In vivo hyperspectral imaging of traumatic skin injuries in a porcine model. Proc SPIE. 2007;6424:642408.

    Article  Google Scholar 

  49. Pilling D, Fan T, Huang D, Kaul B, Gomer RH. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE. 2009;4:e7475.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the contribution of the University of Adelaide Structural Cell Biology Course (Brianna Morante, Chloe Douglas, and Sebastian Stead), histopathology services (Christopher Leigh, Emily Schneider, and Nardia Gagliardi), and Summer Student Grant that enabled the work to be performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil E. I. Langlois.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langlois, N.E.I., Olds, K., Ross, C. et al. Heme oxygenase-1 and heme oxygenase-2 expression in bruises. Forensic Sci Med Pathol 11, 482–487 (2015). https://doi.org/10.1007/s12024-015-9660-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-015-9660-1

Keywords

Navigation